We consider the estimation of nonparametric regression models with predictors being measured with a mixture of Berkson and classical errors. In practice, the Berkson error arises when the variable X of interest is uno...We consider the estimation of nonparametric regression models with predictors being measured with a mixture of Berkson and classical errors. In practice, the Berkson error arises when the variable X of interest is unobservable and only a proxy of X can be measured while the inaccuracy related to the observation of the proxy causes an error of classical type. In this paper, we propose two nonparametric estimators of the regression function in the presence of either or both types of errors. We prove the asymptotic normality of our estimators and derive their rates of convergence. The finite-sample properties of the estimators are investigated through simulation studies.展开更多
文摘We consider the estimation of nonparametric regression models with predictors being measured with a mixture of Berkson and classical errors. In practice, the Berkson error arises when the variable X of interest is unobservable and only a proxy of X can be measured while the inaccuracy related to the observation of the proxy causes an error of classical type. In this paper, we propose two nonparametric estimators of the regression function in the presence of either or both types of errors. We prove the asymptotic normality of our estimators and derive their rates of convergence. The finite-sample properties of the estimators are investigated through simulation studies.