Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial ...In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.展开更多
Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough hi...Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.展开更多
The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into t...The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into the quasi-conforming framework and a novel method, i.e., the exact geometry based quasi-conforming analysis is proposed. In present method the geometry is exactly described by non-uniform rational B-spline bases, while the solution space by traditional polynomial bases. Present method combines the merits of both isogeometric analysis and quasi-conforming finite element method. In this letter Euler-Bernoulli beam problem is solved as an example and the results show that the present method is effective and promising.展开更多
The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and mo...The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and moving mass problem in order to determine the behaviour of the system under consideration. The analytical method in terms of series solution and numerical method were used for the governing equation. The effect of various beam observed that the response amplitude due to the moving force is greater than that due to moving mass. It was also found that the response amplitude of the moving force problem with non-initial stress increase as mass of the mass of the load M increases.展开更多
In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the s...In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.展开更多
In this paper,we study the energy decay estimates for an Euler-Bernoulli beam with a tip mass,which is clamped at one end and attached a tip mass to the free end.
In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated clos...In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated closed loop system. Then by proving the uniqueness of the solution of a related ordinary differential equations, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise frequency domain multiplier method, we prove that the corresponding closed loop system can be exponentially stabilized by only one of the two distributed feedback controls proposed in this paper.展开更多
In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions sati...In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions satisfied by the elastic and damping operators are non-local and coupling to each other. It is a difficult problem how to study the mathematicalproperties of this system. This paper provides an approach to study this problem, unifies andcovers all of the previous work. The results obtained are very convenient for applications tothe initial boundary-value problems of linear hyperbolic equations with variable coefficientsand damping.展开更多
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying...Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.展开更多
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
基金supported by the National Natural Science Foundation of China(11272009)National Basic Research Program of China(2010CB731503)U.S. National Science Foundation(0900498)
文摘In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.
文摘Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.
基金supported by the Key Project of the National Natural Science Foundation of China(10932003,11272075)the National Basic Research Program of China(2010CB832700)"04"Great Project of Ministry of Industrialization and Information of China(2011ZX04001-21)
文摘The problem of quick analysis using exact geometry data was proposed by Hughes et al. and the isogeometric analysis framework was introduced as a solution. In this letter, the exact geometry concept is combined into the quasi-conforming framework and a novel method, i.e., the exact geometry based quasi-conforming analysis is proposed. In present method the geometry is exactly described by non-uniform rational B-spline bases, while the solution space by traditional polynomial bases. Present method combines the merits of both isogeometric analysis and quasi-conforming finite element method. In this letter Euler-Bernoulli beam problem is solved as an example and the results show that the present method is effective and promising.
文摘The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and moving mass problem in order to determine the behaviour of the system under consideration. The analytical method in terms of series solution and numerical method were used for the governing equation. The effect of various beam observed that the response amplitude due to the moving force is greater than that due to moving mass. It was also found that the response amplitude of the moving force problem with non-initial stress increase as mass of the mass of the load M increases.
文摘In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.
基金supported by the Natural Science Foundation of Henan Province (0611053300)
文摘In this paper,we study the energy decay estimates for an Euler-Bernoulli beam with a tip mass,which is clamped at one end and attached a tip mass to the free end.
基金Supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No. 201102)Beijing Natural Science Foundation (No. 1052007)
文摘In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated closed loop system. Then by proving the uniqueness of the solution of a related ordinary differential equations, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise frequency domain multiplier method, we prove that the corresponding closed loop system can be exponentially stabilized by only one of the two distributed feedback controls proposed in this paper.
基金Project supported by the National Natural Science Foundation of China.
文摘In recent years more attention has been paid to the mathematical model for aflying ve-hicle which can be considered as an Euler--Bernoulli beam equation with damping. Its character is that the boundary conditions satisfied by the elastic and damping operators are non-local and coupling to each other. It is a difficult problem how to study the mathematicalproperties of this system. This paper provides an approach to study this problem, unifies andcovers all of the previous work. The results obtained are very convenient for applications tothe initial boundary-value problems of linear hyperbolic equations with variable coefficientsand damping.
基金Supported by the National Natural Science Foundation of China(51276017)
文摘Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.