期刊文献+
共找到236,794篇文章
< 1 2 250 >
每页显示 20 50 100
Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition
1
作者 Fatma Harby Mansor Alohali +1 位作者 Adel Thaljaoui Amira Samy Talaat 《Computers, Materials & Continua》 SCIE EI 2024年第2期2689-2719,共31页
Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotiona... Machine Learning(ML)algorithms play a pivotal role in Speech Emotion Recognition(SER),although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state.The examination of the emotional states of speakers holds significant importance in a range of real-time applications,including but not limited to virtual reality,human-robot interaction,emergency centers,and human behavior assessment.Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs.Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients(MFCCs)due to their ability to capture the periodic nature of audio signals effectively.Although these traits may improve their ability to perceive and interpret emotional depictions appropriately,MFCCS has some limitations.So this study aims to tackle the aforementioned issue by systematically picking multiple audio cues,enhancing the classifier model’s efficacy in accurately discerning human emotions.The utilized dataset is taken from the EMO-DB database,preprocessing input speech is done using a 2D Convolution Neural Network(CNN)involves applying convolutional operations to spectrograms as they afford a visual representation of the way the audio signal frequency content changes over time.The next step is the spectrogram data normalization which is crucial for Neural Network(NN)training as it aids in faster convergence.Then the five auditory features MFCCs,Chroma,Mel-Spectrogram,Contrast,and Tonnetz are extracted from the spectrogram sequentially.The attitude of feature selection is to retain only dominant features by excluding the irrelevant ones.In this paper,the Sequential Forward Selection(SFS)and Sequential Backward Selection(SBS)techniques were employed for multiple audio cues features selection.Finally,the feature sets composed from the hybrid feature extraction methods are fed into the deep Bidirectional Long Short Term Memory(Bi-LSTM)network to discern emotions.Since the deep Bi-LSTM can hierarchically learn complex features and increases model capacity by achieving more robust temporal modeling,it is more effective than a shallow Bi-LSTM in capturing the intricate tones of emotional content existent in speech signals.The effectiveness and resilience of the proposed SER model were evaluated by experiments,comparing it to state-of-the-art SER techniques.The results indicated that the model achieved accuracy rates of 90.92%,93%,and 92%over the Ryerson Audio-Visual Database of Emotional Speech and Song(RAVDESS),Berlin Database of Emotional Speech(EMO-DB),and The Interactive Emotional Dyadic Motion Capture(IEMOCAP)datasets,respectively.These findings signify a prominent enhancement in the ability to emotional depictions identification in speech,showcasing the potential of the proposed model in advancing the SER field. 展开更多
关键词 Artificial intelligence application multi features sequential selection speech emotion recognition deep bi-lstm
下载PDF
Attention-Based Bi-LSTM Model for Arabic Depression Classification 被引量:4
2
作者 Abdulqader M.Almars 《Computers, Materials & Continua》 SCIE EI 2022年第5期3091-3106,共16页
Depression is a common mental health issue that affects a large percentage of people all around the world.Usually,people who suffer from this mood disorder have issues such as low concentration,dementia,mood swings,an... Depression is a common mental health issue that affects a large percentage of people all around the world.Usually,people who suffer from this mood disorder have issues such as low concentration,dementia,mood swings,and even suicide.A social media platform like Twitter allows people to communicate as well as share photos and videos that reflect their moods.Therefore,the analysis of social media content provides insight into individual moods,including depression.Several studies have been conducted on depression detection in English and less in Arabic.The detection of depression from Arabic social media lags behind due the complexity of Arabic language and the lack of resources and techniques available.In this study,we performed a depression analysis on Arabic social media content to understand the feelings of the users.A bidirectional long short-term memory(Bi-LSTM)with an attention mechanism is presented to learn important hidden features for depression detection successfully.The proposed deep learning model combines an attention mechanism with a Bi-LSTM to simultaneously focus on discriminative features and learn significant word weights that contribute highly to depression detection.In order to evaluate our model,we collected a Twitter dataset of approximately 6000 tweets.The data labelling was done by manually classifying tweets as depressed or not depressed.Experimental results showed that the proposed model outperformed state-of-the-art machine learning models in detecting depression.The attention-based BiLSTM model achieved 0.83%accuracy on the depression detection task. 展开更多
关键词 Depression detection social media deep learning bi-lstm attention mode
下载PDF
Logistics Demand Forecast of Fresh Food E-Commerce Based on Bi-LSTM Model
3
作者 Shifeng Ni Yan Peng Zijian Liu 《Journal of Computer and Communications》 2022年第9期51-65,共15页
Fresh products have the characteristics of perishable, small batch and high frequency. Therefore, for fresh food e-commerce enterprises, market demand forecasting is particularly important. This paper takes the sales ... Fresh products have the characteristics of perishable, small batch and high frequency. Therefore, for fresh food e-commerce enterprises, market demand forecasting is particularly important. This paper takes the sales data of a fresh food e-commerce enterprise as the logistics demand, analyzes the influence of time and meteorological factors on the demand, extracts the characteristic factors with greater influence, and proposes a logistics demand forecast scheme of fresh food e-commerce based on the Bi-LSTM model. The scheme is compared with other schemes based on the BP neural network and LSTM neural network models. The experimental results show that the Bi-LSTM model has good prediction performance on the problem of logistics demand prediction. This facilitates further research on some supply chain issues, such as business decision-making, inventory control, and logistics capacity planning. 展开更多
关键词 Data Analysis bi-lstm Fresh Food E-Commerce Logistics Demand Forecast
下载PDF
基于改进INFO-Bi-LSTM模型的SO_(2)排放质量浓度预测 被引量:1
4
作者 王琦 柴宇唤 +2 位作者 王鹏程 刘百川 刘祥 《动力工程学报》 CAS CSCD 北大核心 2024年第4期641-649,共9页
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN... 针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。 展开更多
关键词 炉内外联合脱硫 烟气SO_(2)质量浓度 INFO算法 bi-lstm神经网络 Circle混沌映射 自适应t分布
下载PDF
基于主客观环流分型的强降水数值预报MODE检验方法及其在2019年暖季东北地区的应用
5
作者 齐铎 崔晓鹏 +4 位作者 陈力强 黄丽君 刘松涛 卜文惠 王承伟 《大气科学》 CSCD 北大核心 2024年第3期1113-1130,共18页
本文构建了基于主客观环流分型的强降水数值预报空间检验(MODE)方法框架,并利用该框架对欧洲中期天气预报中心全球模式(ECMWF)和中国气象局区域中尺度数值天气预报模式(CMA_MESO)的2019年暖季东北地区强降水预报进行检验。结果表明,201... 本文构建了基于主客观环流分型的强降水数值预报空间检验(MODE)方法框架,并利用该框架对欧洲中期天气预报中心全球模式(ECMWF)和中国气象局区域中尺度数值天气预报模式(CMA_MESO)的2019年暖季东北地区强降水预报进行检验。结果表明,2019年暖季东北地区54个强降水日的环流型可分为:西风槽型(15个)、副热带高压影响型(13个)、急流型(5个)、西部(12个)和东部冷涡型(9个)。其中,西风槽型和急流型以区域性强降水为主,模式对其强降水发生与否的预报能力强,TS评分较高;西部、东部冷涡型强降水的局地性强,模式对其强降水发生与否的预报能力差,TS评分低;副热带高压影响型也以区域性强降水为主,模式对其强降水发生与否的预报能力也比较强,但是对其强降水质心位置、强度、面积等属性预报偏差较大,TS评分也相对较低。另外,从两种模式预报性能对比看,CMA_MESO强降水强度和面积预报较实况普遍偏强,虽然其预报的TS评分一般高于ECMWF,但其对强降水预报的空报率也都比ECMWF大,对强降水的属性预报偏差一致性一般也低于ECMWF,其预报的可订正性整体上不及ECMWF。 展开更多
关键词 主客观融合环流分型 东北冷涡客观识别 强降水 数值预报 mode检验
下载PDF
基于Bi-LSTM与状态约束的心音分割算法
6
作者 王幸之 杨宏波 +3 位作者 宗容 潘家华 王威廉 谭贺飞 《计算机应用与软件》 北大核心 2024年第10期269-275,303,共8页
心音分割是进行准确心音分类的前提。针对心音分割,提出一种基于双向长短时记忆网络(Bi-LSTM)与状态约束的算法。该文通过网格法确定Bi-LSTM网络中的最佳参数,并训练出心音状态识别模型;统计Bi-LSTM预测的心音状态持续时间,并计算自相... 心音分割是进行准确心音分类的前提。针对心音分割,提出一种基于双向长短时记忆网络(Bi-LSTM)与状态约束的算法。该文通过网格法确定Bi-LSTM网络中的最佳参数,并训练出心音状态识别模型;统计Bi-LSTM预测的心音状态持续时间,并计算自相关参数;利用自相关参数和心音固有状态转移规则对预测的心音状态进行约束处理。使用五折交叉验证法在PhysioNet/CinC 2016数据集上进行测试,该算法与同类算法相比,整体性能更佳。 展开更多
关键词 心音图 心音分割 bi-lstm网络 状态约束 自相关
下载PDF
基于Bi-LSTM模型的恶意JavaScript代码检测方法
7
作者 纪育青 方艳红 +1 位作者 谭顺华 王学渊 《计算机应用与软件》 北大核心 2024年第9期357-362,共6页
传统的静态检测恶意JavaScript代码方法十分依赖于已有的恶意代码特征,无法有效提取混淆恶意代码特征,导致检测混淆恶意JavaScript代码的精确率低。针对该问题提出基于双向长短期记忆网络(Bidirectional Long Short-term Memory, Bi-LS... 传统的静态检测恶意JavaScript代码方法十分依赖于已有的恶意代码特征,无法有效提取混淆恶意代码特征,导致检测混淆恶意JavaScript代码的精确率低。针对该问题提出基于双向长短期记忆网络(Bidirectional Long Short-term Memory, Bi-LSTM)的恶意代码检测模型。通过抽象语法树将JavaScript代码转化为句法单元序列,通过Doc2Vec算法将句法单元序列用分布式向量表示,将句向量矩阵送入Bi-LSTM模型进行检测。实验结果表明,该方法对于混淆恶意JavaScript代码具有良好的检测效果且检测效率高,准确率为97.03%,召回率为97.10%。 展开更多
关键词 恶意JavaScript代码检测 bi-lstm 深度学习 Doc2Vec
下载PDF
基于ICEEMDAN模糊熵与Bi-LSTM的工业设备健康状态预测
8
作者 鹿广志 李敬兆 张金伟 《机床与液压》 北大核心 2024年第7期214-219,共6页
工业设备健康状态关系着工业生产能否正常进行,为此提出一种基于改进自适应噪声完备经验模态分解(ICEEMDAN)和双向长短期记忆网络(Bi-LSTM)的工业设备健康状态预测方法。ICEEMDAN用于将原始音频信号进行分解得到若干个固有模态函数(IMF... 工业设备健康状态关系着工业生产能否正常进行,为此提出一种基于改进自适应噪声完备经验模态分解(ICEEMDAN)和双向长短期记忆网络(Bi-LSTM)的工业设备健康状态预测方法。ICEEMDAN用于将原始音频信号进行分解得到若干个固有模态函数(IMF)分量,通过计算相关系数选取最佳分量组进行信号重构,然后计算重构IMF分量的模糊熵值构造特征向量集合,最后再输入到Bi-LSTM网络进行模型训练和预测。实验结果表明:相较于其他模型,基于ICEEMDAN模糊熵和Bi-LSTM的工业设备健康状态预测方法,能够有效提取音频信号特征,并准确进行健康状态预测。 展开更多
关键词 工业设备 ICEEMDAN 音频信号 bi-lstm 健康预测 模糊熵
下载PDF
基于Bi-LSTM的浅层地下双孔洞探测技术
9
作者 梁靖 张红 +3 位作者 叶晨 周立成 刘泽佳 汤立群 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第6期778-783,共6页
文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,... 文章探究一种基于深度学习的浅层地下孔洞探测技术,以应对地下孔洞给桩基施工安全所造成的严重威胁。基于浅层地震反射波法的原理,采用基础施工过程中的桩锤激震作为激励源,通过在探测区域地表上布置少量加速度传感器采集孔洞反射信号,并将反射信号作为深度学习的输入,以输出孔洞信息,建立一种新型的智能孔洞探测方法。结果表明,双向长短期记忆神经网络(bidirectional long short-term memory neural network,Bi-LSTM)的预测模型对于地下双孔洞的工况具有较高的识别准确率,在容许误差为2 m的情况下,孔洞位置和直径的预测准确率可达95.3%。该研究验证了基于深度学习的多孔洞探测技术的可行性,有望为施工前期土层地质状况的评估提供技术保障。 展开更多
关键词 地下孔洞探测 桩锤激震 深度学习 双向长短期记忆神经网络(bi-lstm) 有限元仿真
下载PDF
一种基于粗糙熵的改进K-modes聚类算法
10
作者 刘财辉 曾雄 谢德华 《南京理工大学学报》 CAS CSCD 北大核心 2024年第3期335-341,共7页
K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分... K-modes聚类算法被广泛应用于人工智能、数据挖掘等领域。传统的K-modes聚类算法有不错的聚类效果,但是存在迭代次数多、计算量大、容易受到冗余属性的干扰等问题,且仅采用简单的0-1匹配的方法来定义2个样本属性值之间的距离,没有充分考虑每个属性对聚类结果的影响。针对上述问题,该文将粗糙熵引入K-modes算法。首先利用粗糙集属性约简算法消除冗余属性,确定各属性的重要程度;然后利用粗糙熵确定每个属性的权重,从而定义新的类内距离。将该文所提算法与传统的K-modes聚类算法分别在4组公开数据集上进行对比试验。试验结果表明,该文所提算法聚类准确率比传统的K-modes聚类算法更高。 展开更多
关键词 聚类 K-modes算法 粗糙集 粗糙熵 属性约简 权重
下载PDF
基于贝叶斯自优化Bi-LSTM组合网络的高速铁路轨道-桥梁系统震后响应预测方法 被引量:1
11
作者 彭康 蒋丽忠 +3 位作者 周旺保 余建 向平 吴凌旭 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第3期965-975,共11页
中国高速铁路(HSR)规划建设逐渐向地震易发地区延伸,亟需一种及时、准确的灾后地震响应快速预测方法,以实现高速铁路系统运输生命线安全的快速评估。本文提出了一种基于贝叶斯自优化双向长短期记忆(Bi-LSTM)网络的快速预测方法,以经过... 中国高速铁路(HSR)规划建设逐渐向地震易发地区延伸,亟需一种及时、准确的灾后地震响应快速预测方法,以实现高速铁路系统运输生命线安全的快速评估。本文提出了一种基于贝叶斯自优化双向长短期记忆(Bi-LSTM)网络的快速预测方法,以经过实验验证的高速铁路轨道-桥梁系统有限元模型地震动响应计算数据为样本,将预测地震响应和有限元计算结果进行比较,验证所提方法的精度和鲁棒性,表明该方法在预测高速铁路桥梁结构的非线性地震反应方面是有效的,且高速铁路轨道-桥梁系统的不同预测位置对预测精度的影响不明显;此外,为了降低神经网络训练数据量需求,提出了一种基于离散小波分解的分层聚类算法,结果表明,基于小波分解的分层聚类方法在保证预测精度的同时,有效地减少了训练地震集的输入数量。 展开更多
关键词 高速铁路轨道-桥梁系统 贝叶斯优化 bi-lstm神经网络 离散小波分解 聚类分析
下载PDF
Effects of spot size on the operation mode of Ga As photoconductive semiconductor switch employing extrinsic photoconductivity 被引量:1
12
作者 韦金红 李嵩 +5 位作者 陈红 曾凡正 贾成林 付泽斌 葛行军 钱宝良 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期91-99,共9页
To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insul... To guide the illuminating design to improve the on-state performances of gallium arsenide(GaAs)photoconductive semiconductor switch(PCSS),the effect of spot size on the operation mode of GaAsPCSS based on a semi-insulating wafer with a thickness of 1 mm,triggered by a 1064-nm extrinsic laser beam with the rectangular spot,has been investigated experimentally.It is found that the variation of the spot size in length and width can act on the different parts of the output waveform integrating the characteristics of the linear and nonlinear modes,and then significantly boosts the PCSS toward different operation modes.On this basis,a two-channel model containing the active and passive parts is introduced to interpret the relevant influencing mechanisms.Results indicate that the increased spot length can peak the amplitude of static domains in the active part to enhance the development of the nonlinear switching,while the extended spot width can change the distribution of photogenerated carriers on both parts to facilitate the linear switching and weaken the nonlinear switching,which have been proved by comparing the domain evolutions under different spot sizes. 展开更多
关键词 GaAs PCSS operation mode spot size on-state performances two-channel model domain evolution
下载PDF
UAV-assisted data collection for wireless sensor networks with dynamic working modes 被引量:1
13
作者 Jie Chen Jianhua Tang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期805-812,共8页
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I... Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN. 展开更多
关键词 Unmanned aerial vehicle Wireless sensor networks Cluster heads Dynamic working modes
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach 被引量:1
14
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Real-Time 4-Mode MDM Transmission Using Commercial 400G OTN Transceivers and All-Fiber Mode Multiplexers 被引量:1
15
作者 REN Fang LI Yidan +2 位作者 YE Bing LIU Jianguo CHEN Weizhang 《ZTE Communications》 2024年第1期106-110,共5页
Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low inse... Weakly-coupled mode division multiplexing(MDM)technique is considered a promising candidate to enhance the capacity of an optical transmission system,in which mode multiplexers/demultiplexers(MMUX/MDEMUX)with low insertion loss and modal crosstalk are the key components.In this paper,a low-modal-crosstalk 4-mode MMUX/MDEMUX for the weakly-coupled triple-ring-core few-mode fiber(TRC-FMF)is designed and fabricated with side-polishing processing.The measurement results show that a pair of MMUX/MDEMUX and 25 km weakly-coupled TRC-FMF MDM link achieve low modal crosstalk of lower than−17.5 dB and insertion loss of lower than 11.56 dB for all the four modes.Based on the TRC-FMF and all-fiber MMUX/MDEMUX,an experiment for 25 km real-time 4-mode 3-λwavelength division multiplexing(WDM)-MDM transmission is conducted using commercial 400G optical transport network(OTN)transceivers.The experimental results prove weakly-coupled MDM techniques facilitate a smooth upgrade of the optical transmission system. 展开更多
关键词 optical fiber couplers mode(de)multiplexers mode division multiplexing transmission
下载PDF
Damage constitutive model of lunar soil simulant geopolymer under impact loading 被引量:2
16
作者 Hanyan Wang Qinyong Ma Qianyun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1059-1071,共13页
Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properti... Lunar base construction is a crucial component of the lunar exploration program,and considering the dynamic characteristics of lunar soil is important for moon construction.Therefore,investigating the dynamic properties of lunar soil by establishing a constitutive relationship is critical for providing a theoretical basis for its damage evolution.In this paper,a split Hopkinson pressure bar(SHPB)device was used to perform three sets of impact tests under different pressures on a lunar soil simulant geopolymer(LSSG)with sodium silicate(Na_(2)SiO_(3))contents of 1%,3%,5%and 7%.The dynamic stressestrain curves,failure modes,and energy variation rules of LSSG under different pressures were obtained.The equation was modified based on the ZWT viscoelastic constitutive model and was combined with the damage variable.The damage element obeys the Weibull distribution and the constitutive equation that can describe the mechanical properties of LSSG under dynamic loading was obtained.The results demonstrate that the dynamic compressive strength of LSSG has a marked strain-rate strengthening effect.Na_(2)SiO_(3) has both strengthening and deterioration effects on the dynamic compressive strength of LSSG.As Na_(2)SiO_(3) grows,the dynamic compressive strength of LSSG first increases and then decreases.At a fixed air pressure,5%Na_(2)SiO_(3) had the largest dynamic compressive strength,the largest incident energy,the smallest absorbed energy,and the lightest damage.The ZWT equation was modified according to the stress response properties of LSSG and the range of the SHPB strain rate to obtain the constitutive equation of the LSSG,and the model’s correctness was confirmed. 展开更多
关键词 Lunar soil simulant geopolymer(LSSG) Split hopkinson pressure bar(SHPB)test Constitutive model Energy analysis Failure mode
下载PDF
Control method based on DRFNN sliding mode for multifunctional flexible multistate switch 被引量:1
17
作者 Jianghua Liao Wei Gao +1 位作者 Yan Yang Gengjie Yang 《Global Energy Interconnection》 EI CSCD 2024年第2期190-205,共16页
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st... To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis. 展开更多
关键词 Distribution networks Flexible multistate switch Grounding fault arc suppression Double-loop recursive fuzzy neural network Quasi-continuous second-order sliding mode
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
18
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer Tracking guidance system
下载PDF
基于Bi-LSTM-Dropout的蓄电池剩余使用寿命预测方法 被引量:1
19
作者 黄晓智 张华明 +1 位作者 黄艺航 许志杰 《自动化与信息工程》 2024年第1期42-46,60,共6页
蓄电池剩余使用寿命预测对能源的安全性和可持续发展至关重要。该文提出一种蓄电池剩余使用寿命的预测方法,利用蓄电池的历史运行数据和充放电周期,构建Bi-LSTM-Dropout网络模型。利用Bi-LSTM提取时间序列中蓄电池长期依赖的特征,采用Dr... 蓄电池剩余使用寿命预测对能源的安全性和可持续发展至关重要。该文提出一种蓄电池剩余使用寿命的预测方法,利用蓄电池的历史运行数据和充放电周期,构建Bi-LSTM-Dropout网络模型。利用Bi-LSTM提取时间序列中蓄电池长期依赖的特征,采用Dropout优化算法降低Bi-LSTM网络模型的复杂度,提高模型的泛化能力。实验结果表明,该方法在测试集上的准确率达96.2%,实现了蓄电池剩余使用寿命的精确预测。 展开更多
关键词 蓄电池 剩余使用寿命预测 bi-lstm Dropout优化算法
下载PDF
MODE降水检验评价指标改进及卷积半径应用
20
作者 杨富燕 陈百炼 +2 位作者 彭芳 胡欣欣 李彦霖 《气象科技》 2024年第2期218-227,共10页
基于对象的诊断检验方法(MODE)受降水临界值、卷积半径、属性权重等参数的影响,合理选取卷积半径并准确表征预报场与观测场之间的空间相似度决定了MODE的应用效果。本文基于2020年夏季贵州54个降水个例,以多源融合降水(CMPA)作为实况,使... 基于对象的诊断检验方法(MODE)受降水临界值、卷积半径、属性权重等参数的影响,合理选取卷积半径并准确表征预报场与观测场之间的空间相似度决定了MODE的应用效果。本文基于2020年夏季贵州54个降水个例,以多源融合降水(CMPA)作为实况,使用MODE和FSS评分(Fractions Skill Score)对中国气象局广东快速更新同化数值预报系统(CMA-GD)24 h日降水预报进行空间检验。结果表明:卷积半径过小易造成MODE提取降水对象过多,而卷积半径过大则导致局部降水信息丢失,无法从降水场中提取到降水对象。不同卷积半径下计算的最大相似度中值(M_(MI))存在突变。在M_(MI)基础上引入面积权重构造面积平均最大相似度(A_(MMI))。A_(MMI)不受提取降水对象个数的影响,较M_(MI)更具有稳定性,用于表征降水场之间的整体空间相似程度更为合理。根据对象总面积随卷积半径的变化将降水分为大范围降水和局部降水2类。大范围降水平均总面积随着卷积半径的增加而增加,A_(MMI)随卷积半径变化不大。随着卷积半径的增加,局部降水平均总面积减小,平均A_(MMI)有所减小。局部降水对卷积半径选取较为敏感,以观测场对象面积变化不超过10%的最大半径作为卷积半径有助于保留降水场大部分信息。 展开更多
关键词 降水 mode 空间检验 参数
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部