New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechani...New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.展开更多
The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructur...The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.展开更多
A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this proc...A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.展开更多
Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investig...Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.展开更多
Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, a...Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.展开更多
A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secon...A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secondary cooling zone and the with- drawing-straightening zone. The calculated results were consistent with the measured data showing that the model accords with the practice. The surface temperature and the solidified shell thickness of round billets are more strongly influenced by casting speed than by casting temperature. The holding zones have effect on surface temperature, which is more obvious for the 450 mm round billet. The relation between casting temperature/speed and solidification end is expressed as a linear function. The solidification end is located after straightening machine.展开更多
To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined...To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined microstructure evolution,namely transverse direction(TD)surface,rolling direction(RD)surface,and normal direction(ND)surface,was studied.Effects of temperature and holding time on average grain size and average shape factor were investigated.The results showed that the optimum conditions for preparation of 2A14 semi-solid billets by this process were 615℃ and 20 min(average grain size of 124μm and shape factor of 0.81).Electron backscatter diffraction(EBSD)observations indicated that the microstructure was completely recrystallized when it was heated to 600℃.Grain size was increased with the increase of temperature and grew up slowly with the holding time prolonging.Roundness was increased with increase of holding time but was not sensitive to temperature.展开更多
With establishment of thermal and numerical simulation models,the influence of reduction amount on solidification structure,segregation and shrinkage porosity of continuous casting(CC)billets was investigated.The ther...With establishment of thermal and numerical simulation models,the influence of reduction amount on solidification structure,segregation and shrinkage porosity of continuous casting(CC)billets was investigated.The thermal–mechanical coupled simulation results indicated that with an increase in reduction amount,the temperature in the central area decreases,and the reduction efficiency firstly increases and then decreases,reaching the maximum value at reduction amount of 6 mm.Metallographic analysis showed that increasing the reduction amount is beneficial for the refinement of central solidification structure.Moreover,the internal cracks are more likely to appear at higher reduction efficiency.The X-ray computerized tomography results revealed that a higher reduction amount can significantly reduce the volume fraction and equivalent diameter of the central shrinkage porosities of CC billets and increase the sphericity of them.Simultaneously,the macrosegregation of carbon along the central line is improved as the reduction amount increases;while the reduction amount exceeds 8 mm,the segregation degree will not change any more.展开更多
Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens...Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.展开更多
The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and micros...The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and microstructures of the bonding interface are observed.The results show that cladding hollow billets combine the external and internal layers by metallurgical bonding without mixing when the pouring temperature of the external liquid metal is 903 K.The diffusion region with the thickness of 25 μm can be seen clearly,where mutual diffusion of Si and Mn atoms takes place. In addition,the intermetallic compound Al_(12)(FeMn)_3Si_2 is formed in the interface.展开更多
The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. Ho...The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.展开更多
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures...The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.展开更多
A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed...A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.展开更多
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast...The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.展开更多
To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied....To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.展开更多
AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at th...AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.展开更多
Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost an...Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.展开更多
The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainl...The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.展开更多
The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, an...The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, and strength curves were measured. Two brittle zones and one plastic zone were found in the temperature range from the melting point to 600℃. Embrittlement in zone I is caused by the existence of liquid film along dendritic interfaces. Ductility loss in zone Ⅲ mainly results from precipitates and inclusions as well as S segregation along grain boundaries. Pearlite transformation also accounts for ductility deterioration in the temperature range of 700-600℃. Moreover, the straightening temperature of the test steel should be higher than 925℃ for avoiding the initiation and propagation of surface cracks in billets.展开更多
基金Project(51075099) supported by the National Natural Science Foundation of ChinaProject(E201038) supported by the Natural Science Foundation of Heilongjiang Province,China+3 种基金Project(20090460884) supported by the China Postdoctoral Science FoundationProjects (HIT.NSRIF.2013007 and 2012038) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (2011RFQXG010) supported by the Harbin City Young Scientists Foundation under the GrantProject(LBH-T1102) supported by the Specially Postdoctoral Science Foundation of Heilongjiang Province,China
文摘New strain induced melt activation(new SIMA) method was employed to prepare high-quality semisolid billet of AZ61 magnesium alloy.Optical microscopy and tensile test were used to study the microstructure and mechanical properties of the thixo-extruded component.The results showed that the optimal process parameters for achieving the complete filling status involved the applied pressure of 784 MPa,the pressure holding time of 90 s and the die temperature of 450 ℃.Compared to semisolid isothermal treatment,high mechanical properties such as the tensile strength of 300.5 MPa and elongation of 22% and fine microstructure were obtained in the thixo-extruded parts.With increasing the isothermal temperature and holding time,the tensile strength and elongation were increased firstly and then decreased.When the press pass was increased from 1 to 4,the tensile strength and elongation of the thixo-extruded parts were greatly enhanced and microstructure was refined obviously.
基金financially supported by the Major State Basic Research Development Program of China(Grant No.2013CB632203)the Liaoning Provincial Natural Science Foundation of China(Grant No.201202072)+1 种基金the Program for Liaoning Excellent Talents in University(Grant No.LJQ2012023)the Fundamental Research Foundation of Central Universities(Grant Nos.N120509002 and N120309003)
文摘The low frequency electromagnetic field was applied during direct chill(DC) semi-continuous casting of the ZK60 magnesium alloy billets. Effects of low frequency electromagnetic field on surface quality, microstructure and hot-tearing tendency of Φ500 mm ZK60 magnesium alloy billets were investigated. The results showed that with the application of the low frequency electromagnetic field, the surface quality of the ZK60 magnesium alloy billets is markedly improved and the depth of cold fold is decreased. The microstructure of the billets is also significantly refined. Besides, the distribution of the grain size is relatively uniform from the billet surface towards its center, where the average grain size is 42 μm at surface and 50 μm at center. It also shows that the hot-tearing tendency of DC semi-continuous casting ZK60 magnesium alloy billets is significantly reduced under low frequency electromagnetic field.
基金Projects(51274054,U1332115,51271042,51375070,51401044)supported by the National Natural Science Foundation of ChinaProject(313011)supported by the Key Grant Project of Ministry of Education of China+4 种基金Project(2013A16GX110)supported by the Science and Technology Planning Project of Dalian,ChinaProject(2014M551075)supported by the China Postdoctoral Science FoundationProject supported by the Fundamental Research Funds for the Central Universities,China
文摘A modified horizontal continuous casting process under the electromagnetic field was proposed for preparing AA3003/ AA4045 clad composite hollow billets. To investigate the effect of electromagnetic field on this process, a comprehensive three-dimensional model was developed. Two cases with and without electromagnetic field were compared using the simulations. When rotating electromagnetic stirring is applied, the flow pattern of fluid melt is greatly modified; the mushy zone becomes much wider, the temperature profile becomes more uniform, and the solid fraction decreases for both the external and internal alloy melt layers. These modifications are beneficial for the formation of a bimetal interface and fine and uniform grain structure of the clad composite hollow billet. Experiments conducted using the same electrical and casting parameters as the simulations verify that under the electromagnetic field the microstructure of the clad composite hollow billet becomes fine and the diffusion of the elements at the interface is promoted.
基金Project(2015B090926013)supported by the Science and Technology Program of Guangdong Province,ChinaProject(20170540307)supported by the Natural Science Foundation of Liaoning Province,China
文摘Numerical simulation and experiments were introduced to develop AA4045/AA3003 cladding billets with different clad-ratios. The temperature fields, microstructures and mechanical properties near interface were investigated in detail. The results show that cladding billets with different clad-ratios were fabricated successfully. Si and Mn elements diffused across the bonding interface and formed diffusion layer. With the increase of clad-layer thickness, the interfacial region transforms from semisolid-solid state to liquid-solid state and the diffusion layer increased from 10 to 25 μm. The hardness at interface is higher than that of AA3003 side but lower than that of the other side. The bonding strength increased with the clad-layer thickness, attributing to solution strengthening due to elements diffusion. The cladding billets were extruded into clad pipe by indirect extrusion process after homogenization. The clad pipe remained the interfacial characteristics of as-cast cladding billet and the heredity of clad-ratio during deformation was testified.
基金Supported by the National Key Technology R&D Program of the 11th Five-Year Plan of China(2006BAF04B05)the Natural Science Foundation of Shanxi Province(2010021024-2)
文摘Perfect combination of structural size parameters of the hydroforming billets is essential to obtain even wall thicknesses of the car beam. Finite element ( FE ) analysis on hydroforming car beam was carried out, and the results were optimized according to multiple quality objectives by the grey system theory. With bending angle, bending radius and hight difference along the axis direction as variables, orthogonal FE analyses were conducted and the minimum and maximum wall thicknes ses of the billets with different sizes were obtained. Taking the minimum and maximum wall thick nesses as two references, the correlation coefficient between the data for reference and those for comparison by the grey system theory reduced multi objectives to a single quality objective, and the average correlation level of every billet facilitated the optimization of size parameters for hydroform ing car beam. The trial production showed that the optimization approach satisfied the need of hy droforming car beams.
文摘A coupled mathematical model was established to simulate the whole solidification process of round billet continuous casting for wheel steel using piecewise linear functions of heat flux density in the mold, the secondary cooling zone and the with- drawing-straightening zone. The calculated results were consistent with the measured data showing that the model accords with the practice. The surface temperature and the solidified shell thickness of round billets are more strongly influenced by casting speed than by casting temperature. The holding zones have effect on surface temperature, which is more obvious for the 450 mm round billet. The relation between casting temperature/speed and solidification end is expressed as a linear function. The solidification end is located after straightening machine.
基金financially supported by the National Natural Science Foundation of China (No.51875124)the National Key Research and Development Project,China (No.2019YFB2006503)。
文摘To shorten the preparation process of semi-solid billets,semi-solid billets of 2A14 aluminum alloy were prepared by wrought aluminum directly semi-solid isothermal treatment(WADSSIT)process.Three-dimension(3D)combined microstructure evolution,namely transverse direction(TD)surface,rolling direction(RD)surface,and normal direction(ND)surface,was studied.Effects of temperature and holding time on average grain size and average shape factor were investigated.The results showed that the optimum conditions for preparation of 2A14 semi-solid billets by this process were 615℃ and 20 min(average grain size of 124μm and shape factor of 0.81).Electron backscatter diffraction(EBSD)observations indicated that the microstructure was completely recrystallized when it was heated to 600℃.Grain size was increased with the increase of temperature and grew up slowly with the holding time prolonging.Roundness was increased with increase of holding time but was not sensitive to temperature.
基金financially supported by the National Natural Science Foundation of China(Nos.52127807 and 52271035)National Science and Technology Major Project of China(No.J2019-Ⅵ-0023)the fund of the State Key Laboratory of Solidification Processing(Northwestern Polytechnical University)(No.SKLSP202107).
文摘With establishment of thermal and numerical simulation models,the influence of reduction amount on solidification structure,segregation and shrinkage porosity of continuous casting(CC)billets was investigated.The thermal–mechanical coupled simulation results indicated that with an increase in reduction amount,the temperature in the central area decreases,and the reduction efficiency firstly increases and then decreases,reaching the maximum value at reduction amount of 6 mm.Metallographic analysis showed that increasing the reduction amount is beneficial for the refinement of central solidification structure.Moreover,the internal cracks are more likely to appear at higher reduction efficiency.The X-ray computerized tomography results revealed that a higher reduction amount can significantly reduce the volume fraction and equivalent diameter of the central shrinkage porosities of CC billets and increase the sphericity of them.Simultaneously,the macrosegregation of carbon along the central line is improved as the reduction amount increases;while the reduction amount exceeds 8 mm,the segregation degree will not change any more.
基金financially supported by the National Key R&D Projects(No.2021YFB3702000)the Regional Company Projects in Ansteel Beijing Research Institute(No.2022BJB07GF&No.2022BJB-13GF)。
文摘Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.
基金Item Sponsored by National Natural Science Foundation of China[No.51074031]
文摘The 3003/4045 aluminum alloys cladding hollow billets with the diameter of 60 mm and external thickness of 3 mm are fabricated by horizontal electromagnetic continuous casting.The surface features of ingots and microstructures of the bonding interface are observed.The results show that cladding hollow billets combine the external and internal layers by metallurgical bonding without mixing when the pouring temperature of the external liquid metal is 903 K.The diffusion region with the thickness of 25 μm can be seen clearly,where mutual diffusion of Si and Mn atoms takes place. In addition,the intermetallic compound Al_(12)(FeMn)_3Si_2 is formed in the interface.
基金supported by the National Natural Science Foundation of China (No’s. 51575448 and 51135007)
文摘The cast preformed forming process(CPFP) is increasingly considered and applied in the metal forming industries due to its short process, low cost, and environmental friendliness, especially in the aerospace field. However, how to establish a unified model of a non-uniform as-cast billet depicting the flow stress and microstructure evolution behaviors during hot working is the key to microstructure prediction and parameter optimization of the CPFP. In this work, hot compression tests are performed using a non-uniform as-cast 42 CrMo billet at 1123–1423 K and 0.01–1sà1. The effect laws of the non-uniform state of the as-cast billet with different initial grain sizes on the flow stress and microstructure are revealed deeply. Based on experimental results, a unified model of flow stress and grain size evolutions is developed by the internal variable modeling method. Verified results show that the model can well describe the responses of the flow stress and microstructure to deformation conditions and initial grain sizes. To further evaluate its reliability, the unified model is applied to FE simulation of the cast preformed ring rolling process.The predictions of the rolling force and grain size indicate that it could well describe the flow stress and microstructure evolutions during the process.
文摘The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity.
基金Item Sponsored by National Basic Research Program of China (2004CB619107)
文摘A circular seam cooling nozzle and its online control system have been developed to reduce the center segregation in high carbon steel billets by decreasing the superheat of the molten steel and improving the equiaxed crystal ratio based on the numerical results. An industrial experiment has been carried out on a 150 mm× 150 mm caster to investigate the effect of the circular seam cooling nozzle on the superheat removal of the molten steel. The results show that the circular seam cooling nozzle can be used to control the casting temperature in a closed loop control system. The online control system can be effectively adapted to the variation of operating parameters. The casting lasts about 4 h and about 400 t steel is successfully produced in a continuous operation. The removal of about 14 ℃ superheat and the improvement of approximate 10% equiaxed crystal ratio can be achieved by the newly developed circular seam cooling nozzle.
基金This work is financially supported by Basic Scientific Project of Liaoning Provincial Department of Education(LJKMZ20220591)Science and Technology Plan Project of Changzhou,China(CQ20220057).
文摘The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted.
基金Project(B08040)supported by the Program of Introducing Talents of Discipline to Universities(111 Project),ChinaProject(2009ZX04005-031-11)supported by the National Science and Technology Special Program,China
文摘To manufacture plate by the combination of equal channel angular processing (ECAP) and porthole die extrusion techniques, a novel technique, namely portholes-equal channel angular processing (P-ECAP), was studied. Extrusion of AL6005A plate used for the bullet train plate was investigated by finite element method. The relevant porthole dies involving ECAP technique in channels were designed. Dimensional changes in the scrap part of the extrudate obtained after extrusion from the P-ECAP die, with different channel angles, were predicted. Effects of the channel angle and extrusion speed on the maximum temperature of the workpiece and other field variables were evaluated. At the channel angle of 160° of P-ECAP dies, the extrudate exhibited the optimal performance and the least amount of extrudate scrap was obtained. The optimal extrusion speed was 3-5 mm/s. Moreover, with the increase in ram speed from 1 to 9 mm/s, the peak extrusion load increased by about 49% and the maximum temperature was increased by about 70 ℃. The effective strain exhibited ascending trend in the comer of the ECAP deformation zone. In the solder seam and the side of die bearing of extrudate, the maximum principal stresses were tensile stress.
基金Project(2012CB723307)supported by the National Basic Research Program of ChinaProject(51204046)supported by the National Natural Science Foundation of ChinaProject(20130042130001)supported by the Doctoral Fund of Ministry of Education of China
文摘AA4045/AA3003 cladding billet was prepared by direct chill semi-continuous casting process. The macrostructures, microstructures, temperature distribution, compositions distribution and the mechanical properties at the bonding interface were investigated in detail. The results show that the cladding billet with few defects could be obtained by semi-continuous casting process. At the interface, diffusion layer of about 10μm on average formed between the two alloys due to the diffusion of alloy elements in the temperature range from 596 to 632 °C. From the side of AA4045 to the side of AA3003, the Si content has a trend to decrease, while the Mn content has a trend to increase gradually. Tensile strength of the cladding billet reaches 103.7 MPa, the fractured position is located on the AA3003 side, and the shearing strength is 91.1 MPa, revealing that the two alloys were combined metallurgically by mutual diffusion of alloy elements.
基金Project (50935007) supported by the National Natural Science Foundation of ChinaProject (2010CB731701) supported by the National Basic Research Program of China
文摘Using simple unequal-thickness billet combining isothermal local loading can control the metal flow and improve the cavity fill in manufacturing process of large-scale rib-web titanium alloy component with low cost and short cycle. The beveling transition pattern is well used for variable-thickness region of billet (VTRB) due to its simple and ample range of transition condition. The transition condition development in the local loading process has a significant influence on dynamic boundary of unrestricted portion of VTRB. With the help of reasonable assumptions, a mathematical model of transition condition development was established by theoretical analysis. The predicted results for local loading process of rib-web component using the established model were compared with the numerical and experimental ones, and the results indicated that the model of transition condition development is reasonable. Using the established model could deal with the dynamic boundary of unrestricted portion of VTRB well, and the model is suitable for the analysis of metal flow and cavity fill in local loading process of multi-ribs component.
基金supported by National Natural Science Foundation of China(61403149,61573298)Natural Science Foundation of Fujian Province(2015J01261,2016J05165)Foundation of Huaqiao University(Z14Y0002)
文摘The principle and technological design of electroslag continuous casting (ESCC), including bifilar mode, T-shaped mould, and metal level detecting system, are detailed. Remelting was carded out for 1Crl8Ni9Ti stainless steel with ESCC. The surface finish, chemical composition, macroand microstructures, and inclusions of the remelted billets were characterized. ESCC reduces the cost and increases the productivity in comparison to traditional ESR, while achieves comparably excellent products.
基金financially supported by the National High Technology Research and Development Program of China(No.2013AA031601)
文摘The high-temperature mechanical properties of near-eutectoid steel were studied with a Cleeble-1500 simu- lation machine. Zero strength temperature (ZST), zero ductility temperature (ZDT), hot ductility curves, and strength curves were measured. Two brittle zones and one plastic zone were found in the temperature range from the melting point to 600℃. Embrittlement in zone I is caused by the existence of liquid film along dendritic interfaces. Ductility loss in zone Ⅲ mainly results from precipitates and inclusions as well as S segregation along grain boundaries. Pearlite transformation also accounts for ductility deterioration in the temperature range of 700-600℃. Moreover, the straightening temperature of the test steel should be higher than 925℃ for avoiding the initiation and propagation of surface cracks in billets.