Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrai...The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrains from sending any packet before the expiry of its backoff period. After that, the node is required to sense the medium for two successive time slots to assert that the medium is clear from any ongoing transmissions (this is referred to as Clear Channel Assessment (CCA)). Upon finding the medium busy, the node doubles its backoff period and repeats that process. While effective in reducing the likelihood of collisions, this approach takes no measures to preserve the priorities among the nodes contending to access the medium. In this paper we propose the Priority-Based BEB (PB-BEB) algorithm in which we enhance BEB such that nodes’ priority is preserved. We provide a simulation study to examine the performance of PB-BEB. Our simulations show that the latter not only outperforms BEB in terms of fairness, but also show promising results in terms other parameters like channel utilization, reliability, and power conservation.展开更多
In recent years,the notion of resilience has been developed and applied in many technical areas,becoming exceptionally pertinent to disaster risk science.During a disaster situation,accurate sensing information is the...In recent years,the notion of resilience has been developed and applied in many technical areas,becoming exceptionally pertinent to disaster risk science.During a disaster situation,accurate sensing information is the key to efficient recovery efforts.In general,resilience aims to minimize the impact of disruptions to systems through the fast recovery of critical functionality,but resilient design may require redundancy and could increase costs.In this article,we describe a method based on binary linear programming for sensor network design balancing efficiency with resilience.The application of the developed framework is demonstrated for the case of interior building surveillance utilizing infrared sensors in both twoand three-dimensional spaces.The method provides optimal sensor placement,taking into account critical functionality and a desired level of resilience and considering sensor type and availability.The problem formulation,resilience requirements,and application of the optimization algorithm are described in detail.Analysis of sensor locations with and without resilience requirements shows that resilient configuration requires redundancy in number of sensors and their intelligent placement.Both tasks are successfully solved by the described method,which can be applied to strengthen the resilience of sensor networks by design.The proposed methodology is suitable for large-scale optimization problems with many sensors and extensive coverage areas.展开更多
Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive amb...Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time, and provide real-time updates of the patient’s status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for a WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solu-tions towards in-body and on-body sensor networks.展开更多
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.
文摘The IEEE 802.15.4 standard utilizes the CSMA-CA mechanism to control nodes’ access to the shared wireless communication medium. CSMA-CA implements the Binary Exponential Backoff (BEB) algorithm by which a node refrains from sending any packet before the expiry of its backoff period. After that, the node is required to sense the medium for two successive time slots to assert that the medium is clear from any ongoing transmissions (this is referred to as Clear Channel Assessment (CCA)). Upon finding the medium busy, the node doubles its backoff period and repeats that process. While effective in reducing the likelihood of collisions, this approach takes no measures to preserve the priorities among the nodes contending to access the medium. In this paper we propose the Priority-Based BEB (PB-BEB) algorithm in which we enhance BEB such that nodes’ priority is preserved. We provide a simulation study to examine the performance of PB-BEB. Our simulations show that the latter not only outperforms BEB in terms of fairness, but also show promising results in terms other parameters like channel utilization, reliability, and power conservation.
基金funded by the Integrating Energy and Computing Networks project funded through the USACE Military Programs
文摘In recent years,the notion of resilience has been developed and applied in many technical areas,becoming exceptionally pertinent to disaster risk science.During a disaster situation,accurate sensing information is the key to efficient recovery efforts.In general,resilience aims to minimize the impact of disruptions to systems through the fast recovery of critical functionality,but resilient design may require redundancy and could increase costs.In this article,we describe a method based on binary linear programming for sensor network design balancing efficiency with resilience.The application of the developed framework is demonstrated for the case of interior building surveillance utilizing infrared sensors in both twoand three-dimensional spaces.The method provides optimal sensor placement,taking into account critical functionality and a desired level of resilience and considering sensor type and availability.The problem formulation,resilience requirements,and application of the optimization algorithm are described in detail.Analysis of sensor locations with and without resilience requirements shows that resilient configuration requires redundancy in number of sensors and their intelligent placement.Both tasks are successfully solved by the described method,which can be applied to strengthen the resilience of sensor networks by design.The proposed methodology is suitable for large-scale optimization problems with many sensors and extensive coverage areas.
文摘Recent advances in Micro-Electro-Mechanical Systems (MEMS) technology, integrated circuits, and wireless communication have allowed the realization of Wireless Body Area Networks (WBANs). WBANs promise unobtrusive ambulatory health monitoring for a long period of time, and provide real-time updates of the patient’s status to the physician. They are widely used for ubiquitous healthcare, entertainment, and military applications. This paper reviews the key aspects of WBANs for numerous applications. We present a WBAN infrastructure that provides solutions to on-demand, emergency, and normal traffic. We further discuss in-body antenna design and low-power MAC protocol for a WBAN. In addition, we briefly outline some of the WBAN applications with examples. Our discussion realizes a need for new power-efficient solu-tions towards in-body and on-body sensor networks.
文摘网络覆盖率和节点功耗是WSNs(Wireless Sensor Networks)中主要考虑的2个性能指标,尽管现有的许多覆盖方法对这2个指标做了相应的提升,但它们大多只针对一个性能进行改进,而对另一个性能的优劣未作详细的讨论。针对这种不足,提出了一种基于VFA(Virtual Force Algorithm)的改进算法,将WSN进行网格划分,节点对网格的作用力和其它作用力进行自适应选择;在所选合力作用下,传感器节点进行重新部署,进一步优化WSN的动态覆盖,使WSN达到较优的覆盖状态;同时,通过对合力门限值的修正,使动态节点的能耗尽可能较少。仿真结果表明,该算法不但能实现较大的网络覆盖和较少的节点功耗,而且还有收敛速度快,计算量小,冗余度低等优点。