期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Biped Robot with Triangle Configuration 被引量:5
1
作者 LIU Changhuan YAO Yan’an TIAN Yaobin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期20-28,共9页
A new biped robot with a triangle configuration is presented and it is a planar closed chain mechanism. The scalability of three sides of the triangle is realized by three actuated prismatic joints. The three vertexes... A new biped robot with a triangle configuration is presented and it is a planar closed chain mechanism. The scalability of three sides of the triangle is realized by three actuated prismatic joints. The three vertexes of the triangle are centers of three passive revolute joints coincidently. The biped mechanism for straight walking is proposed and its walking principle and mobility are explained. The static stability and the height and span of one step are analyzed. Kinematic analysis is performed to plan the gaits of walking on an even floor and going upstairs. A prototype is developed and experiments are carried out to validate the straight walking gait. Two additional revolute joints are added to form a modified biped robot which can follow the instruction of turning around. The turning ability is verified by experiments. As a new member of biped robots, its triangle configuration is used to impart geometry knowledge. Because of its high stiffness, some potential applications are on the way. 展开更多
关键词 biped robot closed chain mechanism gait analysis triangle configuration
下载PDF
Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances 被引量:4
2
作者 Chun-Biao Gan Chang-Tao Ding Shi-Xi Yang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期983-994,共12页
During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.Th... During bipedal walking,it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors.The radical basis function(RBF)neural network model of a five-link biped robot is established,and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincar′e map.In contrast with the simulations,the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving.Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints,the response errors of the biped will be increasing with higher disturbance levels,and especially there are larger output fluctuations in the knee and hip joints of the swing leg. 展开更多
关键词 biped robot Multi-source random disturbances Sensitive parameters RBF neural network Taguchi method Performance evaluation
下载PDF
Stability and control of dynamic walking for a five-link planar biped robot with feet 被引量:2
3
作者 Chenglong FU Ken CHEN +1 位作者 Jing XIONG Leon XU 《控制理论与应用(英文版)》 EI 2007年第2期113-120,共8页
During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addres... During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addresses the asymptotic orbit stability for dimension-variant hybrid systems (DVHS). Based on the generalized Poincare map, the stability criterion for DVHS is also presented, and the result is then used to study dynamic walking for a five-link planar biped robot with feet. Time-invariant gait planning and nonlinear control strategy for dynamic walking with fiat feet is also introduced. Simulation results indicate that an asymptotically stable limit cycle of dynamic walking is achieved by the proposed method. 展开更多
关键词 biped robot Dynamic walking Orbit stability Dimension-variant hybrid systems Nonlinear control
下载PDF
Input torque sensitivity to uncertain parameters in biped robot 被引量:4
4
作者 Chang-Tao Ding Shi-Xi Yang Chun-Biao Gan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期452-461,共10页
Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to ... Input torque is the main power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kine-matic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are intro-duced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot param-eters are classified into three categories, i.e., strongly sensi-tive, sensitive and almost insensitive parameters. 展开更多
关键词 biped robot · Uncertain parameter · Trajectory planning · Input torque · Sensitivity
下载PDF
ZMP-based Gait Optimization of the Biped Robot 被引量:1
5
作者 窦瑞军 马培荪 谢玲 《Journal of Donghua University(English Edition)》 EI CAS 2003年第4期83-86,共4页
The gait of the biped robot is described using six parameters such as stature,velocity,length of the step,etc.The algorithm of the Newton-Euler is actualized by object-oriented idea,and then the zero moment point (ZMP... The gait of the biped robot is described using six parameters such as stature,velocity,length of the step,etc.The algorithm of the Newton-Euler is actualized by object-oriented idea,and then the zero moment point (ZMP) of the dynamically walking biped is calculated.Finally,the gait of biped is optimized using gene algorithm,and the optimized result prove the correctness of the algorithm. 展开更多
关键词 biped robot gait design zero moment point (ZMP) genetic algorithm
下载PDF
Balance recovery control for biped robot based on reaction null space method
6
作者 Baoping WANG Renxi HU +1 位作者 Jinming ZHANG Chuangfeng HUAI 《控制理论与应用(英文版)》 EI 2009年第1期87-91,共5页
A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method... A biped walking robot should be able to keep balance even in the presence of disturbing forces. This paper presents a step strategy concept of biped walking robot that is stabilized by using reaction null space method. The called "step strategy" can be modeled by means of the reaction null space method that introduced earlier to tackle dynamic interaction problems of free-floating robots, or moving base robots in general. 6-DOF biped robot model simulations are used to confirm the validity. 展开更多
关键词 biped robot Balance recovery control Reaction null space Step strategy
下载PDF
LIE SYMMETRIES AND CONSERVED QUANTITY OF A BIPED ROBOT
7
作者 KeXianxin GongZhenbang FuJingli 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第2期183-188,共6页
For a better understanding of the dynamic principles governing biped locomotion, the Lie symmetries and conservation laws of a biped robot are studied. In Lie theory, Lie sym- metries and conservation laws can be de... For a better understanding of the dynamic principles governing biped locomotion, the Lie symmetries and conservation laws of a biped robot are studied. In Lie theory, Lie sym- metries and conservation laws can be derived from the form invariance of di?erential equations undergoing in?nitesimal transformation. By introducing in?nitesimal transformations including time and spatial coordinates, the determining equations of a biped robot are established. Then the necessary and su?cient conditions for a biped robot to have conserved quantities are obtained. For the lateral-plane dynamical model of a biped robot, a Lie conserved quantity is found. 展开更多
关键词 biped robot Lie symmetry conserved quantity
下载PDF
Study on Gait Planning of Dynamic Walking of Biped Robots Based on Optimization Theory
8
作者 谭冠政 《High Technology Letters》 EI CAS 1997年第1期22-25,共4页
In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex opt... In this paper, two important problems in the gait planning of dynamic walking of biped robot, i.e., finding inverse kinematic solution and constructing joint trajectories, are studied in detail by adopting complex optimization theory. The optimization algorithm for finding the inverse kinematic solution is developed, the construction method of joint trajectories is given, and the gait planning method of dynamic walking of biped robots is proposed. 展开更多
关键词 biped robot Dynamic walking Gait planning Complex optimization theory
下载PDF
Development of Wheel-Legged Biped Robots:A Review
9
作者 Xuefei Liu Yi Sun +7 位作者 Shikun Wen Kai Cao Qian Qi Xiaoshu Zhang Huan Shen Guangming Chen Jiajun Xu Aihong Ji 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期607-634,共28页
The wheel-legged biped robot is a typical ground-based mobile robot that can combine the high velocity and high efficiency pertaining to wheeled motion and the strong,obstacle-crossing performance associated with legg... The wheel-legged biped robot is a typical ground-based mobile robot that can combine the high velocity and high efficiency pertaining to wheeled motion and the strong,obstacle-crossing performance associated with legged motion.These robots have gradually exhibited satisfactory application potential in various harsh scenarios such as rubble rescue,military operations,and wilderness exploration.Wheel-legged biped robots are divided into four categories according to the open–close chain structure forms and operation task modes,and the latest technology research status is summarized in this paper.The hardware control system,control method,and application are analyzed,and the dynamic balance control for the two-wheel,biomimetic jumping control for the legs and whole-body control for integrating the wheels and legs are analyzed.In summary,it is observed that the current research exhibits problems,such as the insufficient application of novel materials and a rigid–flexible coupling design;the limited application of the advanced,intelligent control methods;the inadequate understanding of the bionic jumping mechanisms in robot legs;and the insufficient coordination ability of the multi-modal motion,which do not exhibit practical application for the wheel-legged biped robots.Finally,this study discusses the key research directions and development trends for the wheel-legged biped robots. 展开更多
关键词 Wheel-legged biped robot Wheeled motion Legged motion Control strategy
下载PDF
Kinematic analysis of flexible bipedal robotic systems
10
作者 R.FAZEL A.M.SHAFEI S.R.NEKOO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期795-818,共24页
In spite of its intrinsic complexities,the passive gait of bipedal robots on a sloping ramp is a subject of interest for numerous researchers.What distinguishes the present research from similar works is the considera... In spite of its intrinsic complexities,the passive gait of bipedal robots on a sloping ramp is a subject of interest for numerous researchers.What distinguishes the present research from similar works is the consideration of flexibility in the constituent links of this type of robotic systems.This is not a far-fetched assumption because in the transient(impact)phase,due to the impulsive forces which are applied to the system,the likelihood of exciting the vibration modes increases considerably.Moreover,the human leg bones that are involved in walking are supported by viscoelastic muscles and ligaments.Therefore,for achieving more exact results,it is essential to model the robot links with viscoelastic properties.To this end,the Gibbs-Appell formulation and Newton's kinematic impact law are used to derive the most general form of the system's dynamic equations in the swing and transient phases of motion.The most important issue in the passive walking motion of bipedal robots is the determination of the initial robot configuration with which the system could accomplish a periodic and stable gait solely under the effect of gravitational force.The extremely unstable nature of the system studied in this paper and the vibrations caused by the impulsive forces induced by the impact of robot feet with the inclined surface are some of the very serious challenges encountered for achieving the above-mentioned goal.To overcome such challenges,an innovative method that uses a combination of the linearized equations of motion in the swing phase and the algebraic motion equations in the transition phase is presented in this paper to obtain an eigenvalue problem.By solving this problem,the suitable initial conditions that are necessary for the passive gait of this bipedal robot on a sloping surface are determined.The effects of the characteristic parameters of elastic links including the modulus of elasticity and the Kelvin-Voigt coefficient on the walking stability of this type of robotic systems are also studied.The findings of this parametric study reveal that the increase in the Kelvin-Voigt coefficient enhances the stability of the robotic system,while the increase in the modulus of elasticity has an opposite effect. 展开更多
关键词 bipedal robot flexible link swing phase transient phase eigenvalue problem Kelvin-Voigt coefficient
下载PDF
Biped Walking Robot Based on a 2-UPU+2-UU Parallel Mechanism 被引量:7
11
作者 MIAO Zhihuai YAO Yan'an KONG Xianwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期269-278,共10页
Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walk... Existing biped robots mainly fall into two categories: robots with left and right feet and robots with upper and lower feet. The load carrying capability of a biped robot is quite limited since the two feet of a walking robot supports the robot alternatively during walking. To improve the load carrying capability, a novel biped walking robot is proposed based on a 2-UPU+2-UU parallel mechanism. The biped walking robot is composed of two identical platforms(feet) and four limbs, including two UPU(universal-prismatic-universal serial chain) limbs and two UU limbs. To enhance its terrain adaptability like articulated vehicles, the two feet of the biped walking robot are designed as two vehicles in detail. The conditions that the geometric parameters of the feet must satisfy are discussed. The degrees-of-freedom of the mechanism is analyzed by using screw theory. Gait analysis, kinematic analysis and stability analysis of the mechanism are carried out to verify the structural design parameters. The simulation results validate the feasibility of walking on rugged terrain. Experiments with a physical prototype show that the novel biped walking robot can walk stably on smooth terrain. Due to its unique feet design and high stiffness, the biped walking robot may adapt to rugged terrain and is suitable for load-carrying. 展开更多
关键词 parallel mechanism biped robot screw theory gait analysis
下载PDF
Near Optimal PID Controllers for the Biped Robot While Walking on Uneven Terrains 被引量:1
12
作者 Ravi Kumar Mandava Pandu Ranga Vundavilli 《International Journal of Automation and computing》 EI CSCD 2018年第6期689-706,共18页
The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the ... The execution of the gaits generated with the help of a gait planner is a crucial task in biped locomotion. This task is to be achieved with the help of a suitable torque based controller to ensure smooth walk of the biped robot. It is important to note that the success of the developed proportion integration differentiation (PID) controller depends on the selected gains of the controller. In the present study, an attempt is made to tune the gains of the PID controller for the biped robot ascending and descending the stair case and sloping surface with the help of two non-traditional optimization algorithms, namely modified chaotic invasive weed optimization (MCIWO) and particle swarm optimization (PSO) algorithms. Once the optimal PID controllers are developed, a simulation study has been conducted in computer for obtaining the optimal tuning parameters of the controller of the biped robot. Finally, the optimal gait angles obtained by using the best controller are fed to the real biped robot and found that the biped robot has successfully negotiated the said terrains. 展开更多
关键词 biped robot STAIRCASE sloping surface proportion integration differentiation (PID) controller modified chaotic invasive weed optimization (MCIWO) particle swarm optimization (PSO) algorithm.
原文传递
Disturbance rejection for biped robots during walking and running using control moment gyroscopes
13
作者 Haochen Xu Zhangguo Yu +3 位作者 Xuechao Chen Chencheng Dong Huanzhong Chen Qiang Huang 《IET Cyber-Systems and Robotics》 EI 2022年第4期268-282,共15页
Keeping balance in movement is an important premise for biped robots to complete various tasks.Now,the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body.When r... Keeping balance in movement is an important premise for biped robots to complete various tasks.Now,the balance control of biped robots mainly depends on the cooperation of various joints of the robot's body.When robots move faster,the adjustment allowance of joints is reduced,and the robot's anti-disturbance ability will inevitably decline.To solve this problem,the control moment gyroscope(CMG)is creatively used as an auxiliary stabilisation device for fully actuated biped robots and the CMG assistance strategy,which can be integrated into the biped's balance control framework,is proposed.This strategy includes model predictive control module,distribution module,and CMG precession controller.Under the command of it,CMGs can effectively assist the robot in resisting impact and returning to initial positions in time.The results of anti-impact simulation on the walking and running biped robot prove that,with the help of CMGs,the robot's ability to resist disturbance and remain stable is significantly improved.The cover image is based on the Original Article Disturbance rejection for biped robots during walking and running using control moment gyroscopes by Haochen Xu et al.,https://doi.org/10.1049/csy2.12070. 展开更多
关键词 anti-impact biped robot control moment gyroscope model predictive control
原文传递
Dynamic Analysis of the Biped Ice-skater Robot of Passive Wheel Type
14
作者 徐子力 吕恬生 +2 位作者 田华 徐振华 宋立博 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第1期122-128,共7页
A new passive wheel type of biped ice-skater robot (BISR) subjected to nonholonomic constraints was presented on the basis of ice-skating principle. Its motion principle and construction were discussed. After the mode... A new passive wheel type of biped ice-skater robot (BISR) subjected to nonholonomic constraints was presented on the basis of ice-skating principle. Its motion principle and construction were discussed. After the model was simplified and the coordinate systems were established, the motion differential equations of the robot were obtained with the generalized Lagrange-Maggi equation when the nonholonomic constraints existed. Actual examples were given and the result was simulated on computer. 展开更多
关键词 biped ice-skater robot DYNAMICS nonholonomic constraint Maggi equation
下载PDF
上斜坡双足机器人行走的稳定性分析
15
作者 仝丽妍 蒋贵荣 +1 位作者 江波 龙腾飞 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期131-139,共9页
为了研究上斜坡双足机器人行走周期步态稳定性,采用拉格朗日方法建立双足机器人行走脉冲混杂系统,构造庞加莱映射,再通过对映射不动点的分析得到机器人行走周期步态的存在性及稳定性条件。研究结果表明:在斜坡角为0.1 rad的条件下,当线... 为了研究上斜坡双足机器人行走周期步态稳定性,采用拉格朗日方法建立双足机器人行走脉冲混杂系统,构造庞加莱映射,再通过对映射不动点的分析得到机器人行走周期步态的存在性及稳定性条件。研究结果表明:在斜坡角为0.1 rad的条件下,当线性脉冲推力各项系数选取合适参数时,双足机器人上斜坡行走系统存在稳定的周期-1步态;当脉冲推力的常数项系数取值不同时,其对应产生不同类型的周期-1步态;当行走系统状态参数改变时,其产生不同运动状态的周期-1步态。 展开更多
关键词 双足机器人 脉冲推力 脉冲混杂系统 庞加莱映射 周期步态
下载PDF
基于深度强化学习分层控制的双足机器人多模式步态系统研究
16
作者 徐毓松 上官倩芡 安康 《上海师范大学学报(自然科学版中英文)》 2024年第2期260-267,共8页
提出一种基于深度强化学习(DRL)分层控制的双足机器人多模式步态生成系统.首先采用优势型演员-评论家框架作为高级控制策略,引入近端策略优化(PPO)算法、课程学习(CL)思想对策略进行优化,设计比例-微分(PD)控制器为低级控制器;然后定义... 提出一种基于深度强化学习(DRL)分层控制的双足机器人多模式步态生成系统.首先采用优势型演员-评论家框架作为高级控制策略,引入近端策略优化(PPO)算法、课程学习(CL)思想对策略进行优化,设计比例-微分(PD)控制器为低级控制器;然后定义机器人观测和动作空间进行策略参数化,并根据对称双足行走步态周期性的特点,设计步态周期奖励函数和步进函数;最后通过生成足迹序列,设计多模式任务场景,并在Mujoco仿真平台下验证方法的可行性.结果表明,本方法能够有效提高双足机器人在复杂环境下行走的稳定性以及泛化性. 展开更多
关键词 双足机器人 步态规划 近端策略优化(PPO) 多模式任务 课程学习(CL)
下载PDF
Learning Robust Locomotion for Bipedal Robot via Embedded Mechanics Properties
17
作者 Yuanxi Zhang Xuechao Chen +4 位作者 Fei Meng Zhangguo Yu Yidong Du Junyao Gao Qiang Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1278-1289,共12页
Reinforcement learning(RL)provides much potential for locomotion of legged robot.Due to the gap between simulation and the real world,achieving sim-to-real for legged robots is challenging.However,the support polygon ... Reinforcement learning(RL)provides much potential for locomotion of legged robot.Due to the gap between simulation and the real world,achieving sim-to-real for legged robots is challenging.However,the support polygon of legged robots can help to overcome some of these challenges.Quadruped robot has a considerable support polygon,followed by bipedal robot with actuated feet,and point-footed bipedal robot has the smallest support polygon.Therefore,despite the existing sim-to-real gap,most of the recent RL approaches are deployed to the real quadruped robots that are inherently more stable,while the RL-based locomotion of bipedal robot is challenged by zero-shot sim-to-real task.Especially for the point-footed one that gets better dynamic performance,the inevitable tumble brings extra barriers to sim-to-real task.Actually,the crux of this type of problem is the difference of mechanics properties between the physical robot and the simulated one,making it difficult to play the learned skills well on the physical bipedal robot.In this paper,we introduce the embedded mechanics properties(EMP)based on the optimization with Gaussian processes to RL training,making it possible to perform sim-to-real transfer on the BRS1-P robot used in this work,hence the trained policy can be deployed on the BRS1-P without any struggle.We validate the performance of the learning-based BRS1-P on the condition of disturbances and terrains not ever learned,demonstrating the bipedal locomotion and resistant performance. 展开更多
关键词 bipedal robot Reinforcement learning Sim-to-real Mechanics properties
下载PDF
基于D-DQN强化学习算法的双足机器人智能控制研究
18
作者 李丽霞 陈艳 《计算机测量与控制》 2024年第3期181-187,共7页
针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络... 针对现有双足机器人智能控制算法存在的轨迹偏差大、效率低等问题,提出了一种基于D-DQN强化学习的控制算法;先分析双足机器人运动中的坐标变换关系和关节连杆补偿过程,然后基于Q值网络实现对复杂运动非线性过程降维处理,采用了Q值网络权值和辅助权值的双网络权值设计方式,进一步强化DQN网络性能,并以Tanh函数作为神经网络的激活函数,提升DQN网络的数值训练能力;在数据训练和交互中经验回放池发挥出关键的辅助作用,通过将奖励值输入到目标函数中,进一步提升对双足机器人的控制精度,最后通过虚拟约束控制的方式提高双足机器人运动中的稳定性;实验结果显示:在D-DQN强化学习的控制算法,机器人完成第一阶段测试的时间仅为115 s,综合轨迹偏差0.02 m,而且步态切换极限环测试的稳定性良好。 展开更多
关键词 D-DQN 强化学习 双足机器人 智能控制 经验回放池 虚拟约束控制
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部