Crystals of a new organometallic nonlinear optical (NLO) compound, di-ta-chloro-bis[chlorotri(thiourea)bismuth(Ⅲ)]- pentachloro(thiourea)bismuth-ate(Ⅲ) (DCBPB), have been successfully grown from formic a...Crystals of a new organometallic nonlinear optical (NLO) compound, di-ta-chloro-bis[chlorotri(thiourea)bismuth(Ⅲ)]- pentachloro(thiourea)bismuth-ate(Ⅲ) (DCBPB), have been successfully grown from formic acid aqueous solutions of thio-urea and bismuth chloride by a slow evaporation technique. The crystal structure and atomic composition of DCBPB have been confirmed by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectra, and elemental analysis. The SCXRD results proved that DCBPB crystallizes in triclinic space group P1 with unit cell dimensions of a = 7.0606(2) A, b = 8.8106(4) A, c = 16.3247(8) A, a = 99.242(4)°, fl = 95.309(3)°, )/= 105.856(3)°, and Z= 2. DCBPB crystal exhibits excel-lent transmittance from 500 to 2500 nm and green fluorescence with maximum emission at 508 nm. The thermogravimetric-differential scanning calorimetry (TG-DSC) analysis indicates that a solid-phase reaction took place at 170.1 ℃, whereas the decomposition temperature of the crystal material was 189℃. The NLO property obtained by the Kurtz powder test showed that the second harmonic generation efficiency of DCBPB crystal is two-seventh of KDP crystal.展开更多
Chloride ion batteries(CIB) are considered to be one of the most promising energy storage devices. As cathode materials for CIBs, metal chlorides have many advantages, such as high theoretical energy density, abundant...Chloride ion batteries(CIB) are considered to be one of the most promising energy storage devices. As cathode materials for CIBs, metal chlorides have many advantages, such as high theoretical energy density, abundant elemental resources and ideal discharge voltage plateau. However, the dissolution and huge volume change of metal chlorides during cycling lead to considerable short lifespan, which limits their potential application for CIBs. Herein, the bismuth chloride nanocrystal is confined in mesocellular carbon foam matrix by a new vacuum impregnation approach. The mesocellular carbon foam with large interconnected pores(15.7 or 23.2 nm) may buffer the large volume variation of bismuth chloride during charge and discharge, giving rise to significantly enhanced electrochemical performance. The as-prepared bismuth chloride@mesocellular carbon foam cathode delivered an initial discharge capacity of 298 m Ah/g and a reversible capacity of 91 m Ah/g after 60 cycles. In contrast, the pure bismuth chloride cathode almost cannot discharge after 30 cycles. This is the first report that the metal chloride cathode can achieve a prolonged cycling in CIBs.展开更多
The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesi...The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesis using multicomponent reactions saves steps and minimizes waste generation. The bismuth (III) chloride multicomponent synthesis of a series of hexahydroimidazo[1, 2-</span></span><span><span><span style="font-family:""><i></span></span></span><span><span><i><span style="font-family:"">a</span></i></span></span><span><span><i><span style="font-family:""></i></span></i></span></span><span><span><span style="font-family:"">]pyridines is reported. <span>Bismuth (III) compounds are especially attractive from a green chemistry perspective because they are remarkably nontoxic, non-corrosive <span>and</span> relatively </span>inexpensive. The reported method avoids chromatography and an aqueous waste stream to afford the products in a very <span>mass efficient</span> manner.展开更多
An efficient method for the synthesis of 14-alkyl or aryl 14H-dibenzo[a,j]xanthene derivatives by the reaction of β-naphthol,and aldehydes in the presence of a catalytic amount of bismuth(Ⅲ) chloride(BiCl_3) und...An efficient method for the synthesis of 14-alkyl or aryl 14H-dibenzo[a,j]xanthene derivatives by the reaction of β-naphthol,and aldehydes in the presence of a catalytic amount of bismuth(Ⅲ) chloride(BiCl_3) under solvent-free conditions at 110℃is described.Aliphatic and aromatic aldehydes were used in the reaction and in all cases the desired products were synthesized successfully.This reaction was studied under different temperatures;the maximum yield was obtained in a short reaction period at 110℃.The method offers the advantages of high yields,short reaction times,simplicity and easy workup compared to the conventional method of syntheses.展开更多
In the presence of samarium-bismuth(III) chloride, inter-molecular aldol typereactions of α-bromoacetophenone with various aldehydes in tetrahydrofuran-water mixed solventafford β-hydroxy ketones in moderate to good...In the presence of samarium-bismuth(III) chloride, inter-molecular aldol typereactions of α-bromoacetophenone with various aldehydes in tetrahydrofuran-water mixed solventafford β-hydroxy ketones in moderate to good yields under mild and neutral conditions.展开更多
基金the support by the National Key Research and Development Program of China(No.2016YFC0400408)
文摘Crystals of a new organometallic nonlinear optical (NLO) compound, di-ta-chloro-bis[chlorotri(thiourea)bismuth(Ⅲ)]- pentachloro(thiourea)bismuth-ate(Ⅲ) (DCBPB), have been successfully grown from formic acid aqueous solutions of thio-urea and bismuth chloride by a slow evaporation technique. The crystal structure and atomic composition of DCBPB have been confirmed by single crystal X-ray diffraction (SCXRD), Fourier transform infrared spectra, and elemental analysis. The SCXRD results proved that DCBPB crystallizes in triclinic space group P1 with unit cell dimensions of a = 7.0606(2) A, b = 8.8106(4) A, c = 16.3247(8) A, a = 99.242(4)°, fl = 95.309(3)°, )/= 105.856(3)°, and Z= 2. DCBPB crystal exhibits excel-lent transmittance from 500 to 2500 nm and green fluorescence with maximum emission at 508 nm. The thermogravimetric-differential scanning calorimetry (TG-DSC) analysis indicates that a solid-phase reaction took place at 170.1 ℃, whereas the decomposition temperature of the crystal material was 189℃. The NLO property obtained by the Kurtz powder test showed that the second harmonic generation efficiency of DCBPB crystal is two-seventh of KDP crystal.
基金supported by the National Natural Science Foundation of China (No. 51602150)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Opening Project of CAS Key Laboratory of Materials for Energy Conversion。
文摘Chloride ion batteries(CIB) are considered to be one of the most promising energy storage devices. As cathode materials for CIBs, metal chlorides have many advantages, such as high theoretical energy density, abundant elemental resources and ideal discharge voltage plateau. However, the dissolution and huge volume change of metal chlorides during cycling lead to considerable short lifespan, which limits their potential application for CIBs. Herein, the bismuth chloride nanocrystal is confined in mesocellular carbon foam matrix by a new vacuum impregnation approach. The mesocellular carbon foam with large interconnected pores(15.7 or 23.2 nm) may buffer the large volume variation of bismuth chloride during charge and discharge, giving rise to significantly enhanced electrochemical performance. The as-prepared bismuth chloride@mesocellular carbon foam cathode delivered an initial discharge capacity of 298 m Ah/g and a reversible capacity of 91 m Ah/g after 60 cycles. In contrast, the pure bismuth chloride cathode almost cannot discharge after 30 cycles. This is the first report that the metal chloride cathode can achieve a prolonged cycling in CIBs.
文摘The synthesis of <span>nitrogen containing</span> heterocycles is of particular interest in the pharmaceutical industry due to the range of biological activities exhibited by such compounds. Their synthesis using multicomponent reactions saves steps and minimizes waste generation. The bismuth (III) chloride multicomponent synthesis of a series of hexahydroimidazo[1, 2-</span></span><span><span><span style="font-family:""><i></span></span></span><span><span><i><span style="font-family:"">a</span></i></span></span><span><span><i><span style="font-family:""></i></span></i></span></span><span><span><span style="font-family:"">]pyridines is reported. <span>Bismuth (III) compounds are especially attractive from a green chemistry perspective because they are remarkably nontoxic, non-corrosive <span>and</span> relatively </span>inexpensive. The reported method avoids chromatography and an aqueous waste stream to afford the products in a very <span>mass efficient</span> manner.
基金financial support from the Research Council of Razi University
文摘An efficient method for the synthesis of 14-alkyl or aryl 14H-dibenzo[a,j]xanthene derivatives by the reaction of β-naphthol,and aldehydes in the presence of a catalytic amount of bismuth(Ⅲ) chloride(BiCl_3) under solvent-free conditions at 110℃is described.Aliphatic and aromatic aldehydes were used in the reaction and in all cases the desired products were synthesized successfully.This reaction was studied under different temperatures;the maximum yield was obtained in a short reaction period at 110℃.The method offers the advantages of high yields,short reaction times,simplicity and easy workup compared to the conventional method of syntheses.
基金theNationalNaturalScienceFoundationofChina (No .2 0 0 72 0 33)andtheNaturalScienceFoundationofZhejiangProvince ,China
文摘In the presence of samarium-bismuth(III) chloride, inter-molecular aldol typereactions of α-bromoacetophenone with various aldehydes in tetrahydrofuran-water mixed solventafford β-hydroxy ketones in moderate to good yields under mild and neutral conditions.