期刊文献+
共找到210篇文章
< 1 2 11 >
每页显示 20 50 100
Prediction of length-of-day using extreme learning machine 被引量:5
1
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 Length-of-day (LOD) predictionextreme learning machine (ELM) Artificial neural networks (ANN) extreme learning machine (ELM) Earth orientation parameters (EOP)EOP prediction comparison campaign (EOP PCC)Least squares
原文传递
Aeroengine Performance Parameter Prediction Based on Improved Regularization Extreme Learning Machine
2
作者 CAO Yuyuan ZHANG Bowen WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期545-559,共15页
Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machin... Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machine(RELM)is one of them.However,the regularization parameter determination of RELM consumes computational resources,which makes it unsuitable in the field of aeroengine performance parameter prediction with a large amount of data.This paper uses the forward and backward segmentation(FBS)algorithms to improve the RELM performance,and introduces an adaptive step size determination method and an improved solution mechanism to obtain a new machine learning algorithm.While maintaining good generalization,the new algorithm is not sensitive to regularization parameters,which greatly saves computing resources.The experimental results on the public data sets prove the above conclusions.Finally,the new algorithm is applied to the prediction of aero-engine performance parameters,and the excellent prediction performance is achieved. 展开更多
关键词 extreme learning machine AEROENGINE performance parameter prediction forward and backward segmentation algorithms
下载PDF
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
3
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality prediction Predictive modeling Aquifers machine learning Regression extreme Gradient Boosting
下载PDF
Effective Return Rate Prediction of Blockchain Financial Products Using Machine Learning
4
作者 K.Kalyani Velmurugan Subbiah Parvathy +4 位作者 Hikmat A.M.Abdeljaber T.Satyanarayana Murthy Srijana Acharya Gyanendra Prasad Joshi Sung Won Kim 《Computers, Materials & Continua》 SCIE EI 2023年第1期2303-2316,共14页
In recent times,financial globalization has drastically increased in different ways to improve the quality of services with advanced resources.The successful applications of bitcoin Blockchain(BC)techniques enable the... In recent times,financial globalization has drastically increased in different ways to improve the quality of services with advanced resources.The successful applications of bitcoin Blockchain(BC)techniques enable the stockholders to worry about the return and risk of financial products.The stockholders focused on the prediction of return rate and risk rate of financial products.Therefore,an automatic return rate bitcoin prediction model becomes essential for BC financial products.The newly designed machine learning(ML)and deep learning(DL)approaches pave the way for return rate predictive method.This study introduces a novel Jellyfish search optimization based extreme learning machine with autoencoder(JSO-ELMAE)for return rate prediction of BC financial products.The presented JSO-ELMAE model designs a new ELMAE model for predicting the return rate of financial products.Besides,the JSO algorithm is exploited to tune the parameters related to the ELMAE model which in turn boosts the classification results.The application of JSO technique assists in optimal parameter adjustment of the ELMAE model to predict the bitcoin return rates.The experimental validation of the JSO-ELMAE model was executed and the outcomes are inspected in many aspects.The experimental values demonstrated the enhanced performance of the JSO-ELMAE model over recent state of art approaches with minimal RMSE of 0.1562. 展开更多
关键词 Financial products blockchain return rate prediction model machine learning parameter optimization
下载PDF
Selective Ensemble Extreme Learning Machine Modeling of Effluent Quality in Wastewater Treatment Plants 被引量:9
5
作者 Li-Jie Zhao 1,2 Tian-You Chai 2 De-Cheng Yuan 1 1 College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110042,China 2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110189,China 《International Journal of Automation and computing》 EI 2012年第6期627-633,共7页
Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable perform... Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable performance of the traditional effluent quality measurements,we propose a selective ensemble extreme learning machine modeling method to enhance the effluent quality predictions.Extreme learning machine algorithm is inserted into a selective ensemble frame as the component model since it runs much faster and provides better generalization performance than other popular learning algorithms.Ensemble extreme learning machine models overcome variations in different trials of simulations for single model.Selective ensemble based on genetic algorithm is used to further exclude some bad components from all the available ensembles in order to reduce the computation complexity and improve the generalization performance.The proposed method is verified with the data from an industrial wastewater treatment plant,located in Shenyang,China.Experimental results show that the proposed method has relatively stronger generalization and higher accuracy than partial least square,neural network partial least square,single extreme learning machine and ensemble extreme learning machine model. 展开更多
关键词 Wastewater treatment process effluent quality prediction extreme learning machine selective ensemble model genetic algorithm.
原文传递
Ladle Furnace Liquid Steel Temperature Prediction Model Based on Optimally Pruned Bagging 被引量:4
6
作者 LU Wu MAO Zhi-zhong YUAN Ping 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第12期21-28,共8页
For accurately forecasting the liquid steel temperature in ladle furnace (LF), a novel temperature predic tion model based on optimally pruned Bagging combined with modified extreme learning machine (ELM) is pro p... For accurately forecasting the liquid steel temperature in ladle furnace (LF), a novel temperature predic tion model based on optimally pruned Bagging combined with modified extreme learning machine (ELM) is pro posed. By analyzing the mechanism of LF thermal system, a thermal model with partial linear structure is obtained. Subsequently, modified ELM, named as partial linear extreme learning machine (PLELM), is developed to estimate the unknown coefficients and undefined function of the thermal model. Finally, a pruning Bagging method is pro- posed to establish the aggregated prediction model for the sake of overcoming the limitation of individual predictor and further improving the prediction performance. In the pruning procedure, AdaBoost is adopted to modify the ag- gregation order of the original Bagging ensembles, and a novel early stopping rule is designed to terminate the aggre- gation earlier. As a result, an optimal pruned Bagging ensemble is achieved, which is able to retain Bagging's ro- bustness against highly influential points, reduce the storage needs as well as speed up the computing time. The pro- posed prediction model is examined by practical data, and comparisons with other methods demonstrate that the new ensemble predictor can improve prediction accuracy, and is usually consisted compactly. 展开更多
关键词 BAGGING extreme learning machine LF liquid steel temperature prediction model ADABOOST
原文传递
Optimized Two-Level Ensemble Model for Predicting the Parameters of Metamaterial Antenna 被引量:2
7
作者 Abdelaziz A.Abdelhamid Sultan R.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2022年第10期917-933,共17页
Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation to... Employing machine learning techniques in predicting the parameters of metamaterial antennas has a significant impact on the reduction of the time needed to design an antenna with optimal parameters using simulation tools.In this paper,we propose a new approach for predicting the bandwidth of metamaterial antenna using a novel ensemble model.The proposed ensemble model is composed of two levels of regression models.The first level consists of three strong models namely,random forest,support vector regression,and light gradient boosting machine.Whereas the second level is based on the ElasticNet regression model,which receives the prediction results from the models in the first level for refinement and producing the final optimal result.To achieve the best performance of these regression models,the advanced squirrel search optimization algorithm(ASSOA)is utilized to search for the optimal set of hyper-parameters of each model.Experimental results show that the proposed two-level ensemble model could achieve a robust prediction of the bandwidth of metamaterial antenna when compared with the recently published ensemble models based on the same publicly available benchmark dataset.The findings indicate that the proposed approach results in root mean square error(RMSE)of(0.013),mean absolute error(MAE)of(0.004),and mean bias error(MBE)of(0.0017).These results are superior to the other competing ensemble models and can predict the antenna bandwidth more accurately. 展开更多
关键词 Ensemble model parameter prediction metamaterial antenna machine learning model optimization
下载PDF
A Novel Tuning Method for Predictive Control of VAV Air Conditioning System Based on Machine Learning and Improved PSO
8
作者 Ning He Kun Xi +1 位作者 Mengrui Zhang Shang Li 《Journal of Beijing Institute of Technology》 EI CAS 2022年第4期350-361,共12页
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th... The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system. 展开更多
关键词 model predictive control(MPC) parameter tuning machine learning improved particle swarm optimization(PSO)
下载PDF
基于多因素分析的烘丝机智能调控研究
9
作者 张风光 张思明 +5 位作者 林敏 叶明樵 周萍芳 蒋鹏冲 刘西尧 温延 《控制工程》 CSCD 北大核心 2024年第6期1138-1145,共8页
烘丝过程中影响出口烟丝水分和温度的干扰因素较多,为了保障出口烟丝水分与温度的稳定性,首先基于烘丝过程的历史数据,采用相关性分析方法对影响因子进行筛选。其次,选取出口烟丝水分和出口烟丝温度为目标值,通过对各机器学习模型的对... 烘丝过程中影响出口烟丝水分和温度的干扰因素较多,为了保障出口烟丝水分与温度的稳定性,首先基于烘丝过程的历史数据,采用相关性分析方法对影响因子进行筛选。其次,选取出口烟丝水分和出口烟丝温度为目标值,通过对各机器学习模型的对比分析选取了能够快速建模与预测的极限学习机(extreme learning machine,ELM)作为建模方法,以通过模型求解运算,得出预测值。最后,采用模拟退火(simulated annealing,SA)算法,实时优化热风风速和排潮风门开度的设定值,实现对出口烟丝水分和温度的预测和控制。实验结果表明,极限学习机模型的预测效果良好,预测当前出口水分的均方根误差为0.015,出口温度的均方根误差为0.638,误差较小,保障了烘丝机智能调控方法的调控精度。 展开更多
关键词 极限学习机 相关性分析 烘丝机 模型预测 实时优化
原文传递
融合可解释机器学习的成品汽油调和配方质量预测评价与致因分析
10
作者 李炜 郑明杰 +1 位作者 李亚洁 梁成龙 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2024年第1期126-136,共11页
受成品汽油调和配方需“先验”评价与修正的驱动,本研究将轻量级梯度提升树(LightGBM)与可解释机器学习(SHAP)方法相结合,兼顾复杂模型精度高与后验SHAP可解释性强的各自优势,提出了一种调和配方质量预测评价及致因分析方法。该方法先... 受成品汽油调和配方需“先验”评价与修正的驱动,本研究将轻量级梯度提升树(LightGBM)与可解释机器学习(SHAP)方法相结合,兼顾复杂模型精度高与后验SHAP可解释性强的各自优势,提出了一种调和配方质量预测评价及致因分析方法。该方法先引用改进遗传算法(IGA)优化LightGBM的超参数,建立了可同时预测成品汽油性能和环保指标的模型,并结合汽油国ⅥA标准与企业生产实际制定了配方质量评价标准,实现配方“先验”评价;再基于SHAP的全局和局部致因分析,对缺陷配方给出了易于操作的单变量定性修正建议。实验结果表明:相比于传统BP网络和随机森林(RF)、以及采用随机搜索和GA优化参数的LightGBM等模型,IGA_LightGBM模型可得到更全面和精准的预测指标,SHAP致因分析可给出契合实际的修正建议。该方法是智能算法代替人工的有益探索。 展开更多
关键词 成品汽油调和 配方质量评价 可解释机器学习 预测建模 致因分析 参数优化
下载PDF
基于钻进参数实时预测土体力学性质的Stacking集成模型
11
作者 李谦 周治刚 +2 位作者 邓光宏 刘绪勇 丁晔 《钻探工程》 2024年第S01期61-69,共9页
岩土体物理力学参数对工程勘察、设计、施工等作业不可或缺,但常规取样试验或原位检测均存在明显的精度误差。据此本文提出基于勘察钻探的实时钻进参数,建立基于机器学习的随钻土体物理力学参数模型。通过采集位于珠海市国家高新技术产... 岩土体物理力学参数对工程勘察、设计、施工等作业不可或缺,但常规取样试验或原位检测均存在明显的精度误差。据此本文提出基于勘察钻探的实时钻进参数,建立基于机器学习的随钻土体物理力学参数模型。通过采集位于珠海市国家高新技术产业开发区内20 m勘探孔的真实数据,将EP-200G型钻机实时随钻采集的钻压、扭矩和三轴振动作为输入数据,将全孔土体粘聚力、内摩擦角、含水量与弹性模量试验数据作为输出。基于建模数据分析,证明使用单算法的3类机器学习模型(支持向量机、神经网络和决策树)的预测精度最高仅为0.78,而基于Stacking理念的集成模型可将预测精度提升至最高0.98。结合该模型,进行了随钻参数与土体参数间的敏感性分析,证实当不同土体参数发生变化时,不同随钻参数会发生明显变化,证明了随钻参数预测土体参数的可靠性与适用性。 展开更多
关键词 土体参数 钻进参数 实时预测模型 敏感性分析 机器学习 Stacking理念 工程勘察
下载PDF
基于极限学习机模型参数优化的光伏功率区间预测技术 被引量:1
12
作者 何之倬 张颖 +4 位作者 郑刚 郑芳 黄琬迪 张沈习 程浩忠 《上海交通大学学报》 EI CAS CSCD 北大核心 2024年第3期285-294,共10页
提出一种基于极限学习机(ELM)模型参数优化的光伏功率区间预测技术.首先,提出加权欧氏距离作为光伏功率预测区间评估指标,筛选历史样本单元并优化ELM训练集;然后,提出ELM参数混合寻优算法,利用精英保留策略遗传算法与分位数回归优化ELM... 提出一种基于极限学习机(ELM)模型参数优化的光伏功率区间预测技术.首先,提出加权欧氏距离作为光伏功率预测区间评估指标,筛选历史样本单元并优化ELM训练集;然后,提出ELM参数混合寻优算法,利用精英保留策略遗传算法与分位数回归优化ELM模型隐层输入及输出权重与偏置参数,并采用训练后的模型预测光伏功率区间;最后,基于光伏电站与气象站历史数据构建实际算例,预测光伏功率区间,并与其他方法得到的结果进行对比.算例结果表明:所提方法在增加区间预测可信度的同时,能较大程度提高区间预测准确度. 展开更多
关键词 光伏功率 区间预测 极限学习机 参数优化 加权欧氏距离指标
下载PDF
基于多模型融合策略的温室番茄光合速率预测方法 被引量:1
13
作者 刘潭 朱洪锐 +3 位作者 袁青云 王永刚 张大鹏 丁小明 《农业机械学报》 EI CAS CSCD 北大核心 2024年第4期337-345,共9页
温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模... 温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模型融合策略的温室番茄光合速率预测方法。首先,采集温湿度、光照强度、CO_(2)浓度不同组合下的番茄光合速率,构建样本集,并采用五折交叉验证法(Cross-Validation)对数据进行预处理。以预处理的数据为基础,分别基于粒子群优化支持向量机(PSO-SVR)、布谷鸟优化极限学习机(CS-ELM)和北方苍鹰优化高斯过程回归(NGO-GPR)算法建立番茄光合速率预测模型对光合速率进行初步预测,然后采用Stacking算法通过基于决策树的集成学习模型(XGBoost)组合各基础模型的预测结果,进而实现多模型融合。仿真分析结果表明,与单一预测模型相比,基于多模型融合的光合速率预测模型充分发挥了各基础模型的优势,可以进一步提高光合速率预测的准确性和稳定性,该模型验证集MAE为0.569 7μmol/(m^(2)·s),RMSE为0.721 4μmol/(m^(2)·s)。因此,本文提出的方法在温室作物光合速率预测方面具有一定的优势,可为温室番茄等作物光环境优化调控提供一定的理论基础和技术支撑。 展开更多
关键词 温室 番茄 光合速率预测 极限学习机 高斯过程回归 多模型融合
下载PDF
基于机器学习的砂土邓肯-张模型参数预测 被引量:1
14
作者 宋瑞 唐洪祥 +3 位作者 张韬 邹君鹏 来源 张鹏 《水利与建筑工程学报》 2024年第1期186-191,226,共7页
为了给砂土邓肯-张模型参数的确定提供一种不做三轴试验条件下的获取途径,以大量的砂土三轴试验数据为基础,利用机器学习算法(支持向量机),用平均粒径、不均匀系数、曲率系数、相对密实度、干密度等较容易测得的基本物理参数作为输入值... 为了给砂土邓肯-张模型参数的确定提供一种不做三轴试验条件下的获取途径,以大量的砂土三轴试验数据为基础,利用机器学习算法(支持向量机),用平均粒径、不均匀系数、曲率系数、相对密实度、干密度等较容易测得的基本物理参数作为输入值,以邓肯-张本构模型参数作为输出值,建立砂土本构参数的预测模型。从输入参数与输出参数的相关性看,输入参数中的干密度对输出参数影响最大;从不同核函数对支持向量机(SVM)预测效果的影响看,RBF核函数预测效果最好;在此基础上,预测邓肯-张本构模型参数。利用建立的参数预测模型,只需进行简单的室内物理性质试验获得基本物理性质参数,即可推定用于工程数值计算的邓肯-张模型参数,提高工程分析的效率和准确性,也可以用于判断室内三轴试验结果的正确性等。 展开更多
关键词 机器学习 砂土 邓肯-张模型 参数预测
下载PDF
基于PCA-SaDE-ELM优化算法的煤层底板破坏深度预测及工程应用 被引量:1
15
作者 刘世伟 赵家鑫 +3 位作者 孙利辉 袁乐忠 杨江华 王中海 《煤炭技术》 CAS 2024年第6期69-73,共5页
基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的... 基于煤层底板破坏深度实测结果统计分析,通过优化数据样本空间,引入自适应差分进化改进的极限学习机算法,构建了煤层底板破坏深度预测模型,与实测结果对比分析验证,并应用于云驾岭煤矿9^(#)煤层底板破坏深度预测。结果表明:模型预测的最大绝对误差不超过0.7 m,相比现有其他预测模型,该模型预测精度提高约70%;云驾岭煤矿19101、19103和19105这3个典型工作面的破坏深度分别为10.80、10.94、11.34 m,介于规范方法和滑移场理论预测结果之间,进一步反映了模型的可靠性;建议对9#煤层底板加固改造后再进行回采。相关研究成果可为我国煤层底板破坏风险管理和煤炭资源的优化回采布置提供一定的理论支撑。 展开更多
关键词 自适应差分进化算法 极限学习机 底板破坏深度 预测模型
原文传递
基于优化极限学习机模型的反应堆中子通量与k_(eff)预测方法研究
16
作者 陈镜宇 刘喜洋 +2 位作者 赵鹏程 刘紫静 李卫 《核技术》 EI CAS CSCD 北大核心 2024年第10期178-187,共10页
通过模拟和扩展人类智能,人工智能能够解决预测反应堆k_(eff)和中子通量等问题。本研究选用国际原子能机构(International Atomic Energy Agency,IAEA)反应堆作为研究对象,以稳态时的堆芯中子通量和k_(eff)为预测量,通过堆芯物理分析程... 通过模拟和扩展人类智能,人工智能能够解决预测反应堆k_(eff)和中子通量等问题。本研究选用国际原子能机构(International Atomic Energy Agency,IAEA)反应堆作为研究对象,以稳态时的堆芯中子通量和k_(eff)为预测量,通过堆芯物理分析程序ADPRES生成数据样本后,利用极限学习机(Extreme Learning Machine,ELM)构建中子通量和k_(eff)的基础神经网络模型,随后通过随机森林(Random Forest,RF)评估特征值重要程度以建立各模型最佳输入特征子集,采用遍历方法确定隐藏层最佳神经元数目,最后使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对其初始权值与阈值进行优化,进一步提高了模型的精度。研究结果显示:经降维优化处理后,神经网络的预测能力有较大提升,其中k_(eff)的预测精度提高了两个量级,中子通量的预测误差降低了87.24%,并且减少了模型训练时间。本文构建方法对快速评估堆芯物理特性有一定参考意义。 展开更多
关键词 极限学习机 鲸鱼优化算法 中子通量 k_(eff) 参数预测方法 随机森林
原文传递
基于LOO-PSO-KELM复合算法的微电阻点焊质量预测与工艺优化
17
作者 张瑞 何奕程 +2 位作者 黄海松 高鑫 杨凯 《焊接》 2024年第11期11-18,26,共9页
【目的】为了提高小样本数据条件下微电阻点焊焊接质量预测的精度和泛化能力,提出了一种基于交叉验证(Leave one out,LOO)与粒子群优化算法(Particle swarm optimization,PSO)协同优化核极限学习机(Kernel extreme learning machine,KE... 【目的】为了提高小样本数据条件下微电阻点焊焊接质量预测的精度和泛化能力,提出了一种基于交叉验证(Leave one out,LOO)与粒子群优化算法(Particle swarm optimization,PSO)协同优化核极限学习机(Kernel extreme learning machine,KELM)的回归预测方法(LOO-PSO-KELM)。【方法】首先,采用正交试验方法开展电阻点焊工艺试验,建立小样本数据集,并采用留一法交叉验证对数据集进行分类。然后,基于验证数据集的绝对误差和与核极限学习机预测模型,利用粒子群优化算法对核极限学习机的参数进行寻优,获得可靠稳定的预测模型。最后,以选取的焊接工艺参数和LOO-PSO-KELM模型为基础,采用粒子群算法对工艺参数进行优化,获取最优工艺参数。【结果】与传统的PSO-BP神经网络和PSO-KELM算法对比,LOO-PSO-KELM算法在各类标准上表现优异,其预测的熔核直径和拉剪力的均方根误差分别为0.0199和4.4249;基于选取的焊接工艺参数对LOO-PSO-KELM模型进行验证,LOO-PSO-KELM模型预测值与试验验证结果的相对误差均小于3%,与正交试验下的最佳参数比较,拉剪力提高了2%。【结论】与传统方法相比,LOO-PSO-KELM预测模型具有更强的预测性能。在小样本数据集下,体现了较强的泛化性能,所提出的方法在微点焊的锂电池连接中具有良好的应用价值。 展开更多
关键词 微电阻点焊 核极限学习机 质量预测 参数优化
下载PDF
基于Stacking集成学习的机械钻速预测方法
18
作者 高云伟 罗利民 +3 位作者 薛凤龙 刘洋 严昊 郑双进 《石油机械》 北大核心 2024年第5期17-24,52,共9页
机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集... 机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集成策略融合K近邻算法(KNN)、支持向量机算法(SVM)和随机森林算法(RF)进行预测验证。预测验证结果显示,分类准确度不高。运用遗传算法进行各基础模型参数优化。优化后,基于KNN、SVM、RF及Stacking集成4种算法,预测机械钻速准确率分别为73.7%、78.9%、81.6%及97.4%,其中Stacking集成模型预测准确率最高。基于Stacking集成学习的机械钻速预测方法开发了机械钻速预测软件,运用软件预测其他2套施工参数下的机械钻速,结果表明,预测机械钻速与实际机械钻速一致,且性能稳定,表明该模型拥有较强的泛化性和较高的预测精度。该智能算法可为新疆工区的该油田机械钻速预测与钻井施工参数优化提供一种新手段。 展开更多
关键词 机械钻速 预测模型 Stacking集成学习 机器学习 施工参数优化 预测验证
下载PDF
基于ISSA-ELM模型的温室环境参数预测研究
19
作者 王瑶 张孟航 +1 位作者 王伟 王进 《辽宁石油化工大学学报》 CAS 2024年第4期75-81,共7页
温室环境系统具有非线性、多变量和强耦合的特点,传统的温室模型难以预测其真实环境。采用极限学习机、BP神经网络和支持向量机三种模型对温室温度、湿度和光照强度进行了预测分析,结果显示极限学习机模型预测值与温室环境实时参数最为... 温室环境系统具有非线性、多变量和强耦合的特点,传统的温室模型难以预测其真实环境。采用极限学习机、BP神经网络和支持向量机三种模型对温室温度、湿度和光照强度进行了预测分析,结果显示极限学习机模型预测值与温室环境实时参数最为相近。为提高温室环境参数的预测精度,采用改进的麻雀搜索算法对极限学习机模型进行优化,预测的环境参数与天津某温室实测数据吻合较好,证实了所提出预测模型用于温室环境调控的可行性。 展开更多
关键词 环境参数 预测模型 极限学习机 麻雀搜索算法
下载PDF
基于多层感知机模型的熔融沉积尺寸误差预测方法
20
作者 周逸扬 陈松茂 周建辉 《塑料工业》 CAS CSCD 北大核心 2024年第8期165-170,共6页
熔融沉积成型(FDM)或熔丝制造(FFF),是当下最常见和广泛使用的3D打印技术之一,可用于制造各种功能性构件。然而,FDM(FFF)制件普遍存在尺寸精度低、表面质量差、易翘曲和机械强度不足等现象。目前普遍采用工艺参数优化方法来解决这些问题... 熔融沉积成型(FDM)或熔丝制造(FFF),是当下最常见和广泛使用的3D打印技术之一,可用于制造各种功能性构件。然而,FDM(FFF)制件普遍存在尺寸精度低、表面质量差、易翘曲和机械强度不足等现象。目前普遍采用工艺参数优化方法来解决这些问题,但往往需要大量的实验工作和复杂的数据处理。因此,本文以碳纤维增强复合材料的熔融沉积3D打印为例,提出一种基于多层感知机(MLP)模型的FDM(FFF)尺寸误差预测方法。实验结果表明,通过采用4个隐藏层数、神经元节点数常规设计的4-Layers-a网络结构,MLP模型能够实现对尺寸误差的预测,准确率均达到95%以上,可有效应用于FDM(FFF)的工艺参数优化。 展开更多
关键词 熔融沉积成型 多层感知机 机器学习 误差预测 参数优化
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部