Control equation and adjoint equation are established by using block pulse functions, which transforms the linear time varying systems with time delays into a system of algebraic equations and the optimal control prob...Control equation and adjoint equation are established by using block pulse functions, which transforms the linear time varying systems with time delays into a system of algebraic equations and the optimal control problems are transformed into an optimization problem of multivariate functions thereby achieving the optimal control of linear systems with time delays.展开更多
In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Blo...In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples.展开更多
In this paper, we present a method for finding the solution of the linear multi-delay systems (MDS) by using the hybrid of the Block-Pulse functions and the Bernoulli polynomials. In this approach, the MDS is reduced ...In this paper, we present a method for finding the solution of the linear multi-delay systems (MDS) by using the hybrid of the Block-Pulse functions and the Bernoulli polynomials. In this approach, the MDS is reduced to a system of linear algebraic equations by expanding various time functions for the hybrid functions and using operational matrices. To demonstrate the validity and the applicability of the technique, some examples are presented.展开更多
文摘Control equation and adjoint equation are established by using block pulse functions, which transforms the linear time varying systems with time delays into a system of algebraic equations and the optimal control problems are transformed into an optimization problem of multivariate functions thereby achieving the optimal control of linear systems with time delays.
文摘In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations of the second kind which is based on replacement of the unknown function by truncated series of well known Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. Finally, we also give some numerical examples.
文摘In this paper, we present a method for finding the solution of the linear multi-delay systems (MDS) by using the hybrid of the Block-Pulse functions and the Bernoulli polynomials. In this approach, the MDS is reduced to a system of linear algebraic equations by expanding various time functions for the hybrid functions and using operational matrices. To demonstrate the validity and the applicability of the technique, some examples are presented.