In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test...In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.展开更多
文摘In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.