A endochitinase gene(Tch) from the fungus Trichoderma viride was introduced into broccoli(Brassica oleracea var. italica) by Agrobacterium-mediated transformation. Sixty-eight putative transformants were obtained ...A endochitinase gene(Tch) from the fungus Trichoderma viride was introduced into broccoli(Brassica oleracea var. italica) by Agrobacterium-mediated transformation. Sixty-eight putative transformants were obtained and the presence of the Tch gene was confirmed by both PCR and Southern blot analysis. RT-PCR analysis showed an accumulation of the transcript encoding the endochitinase protein in the transgenic plants. Using real-time quantitative PCR, the expression profiling of endochitinase gene was analyzed. Primary transformants and selfed progeny were examined for expression of the endochitinase using a fluorometric assay and for their resistance to the pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The endochitinase activities in T0 in vitro plants, T0 mature plants and T1 mature plants were correlated with leaf lesions, and the transgenic line T618 had high endochitinse activities of 102.68, 114.53 and 120.27 nmol L–1 MU min–1 mg–1 protein in the three kinds of plants, respectively. The endochitinase activity showed a positive correlation with the resistance to the pathogens. Most transgenic T0 broccoli had increased resistance to the pathogens of B. cinerea and R. solani in leaf assays and this resistance was confirmed to be inheritable. These findings suggested that expression of the Tch gene from T. viride could enhance resistance to pathogenic fungi in Brassica species.展开更多
基金partly supported by the 863 Program (2012AA100A03)973 Program (2012CB113900)Beijing Agricultural Industry Project, China (BLVT-03)
文摘A endochitinase gene(Tch) from the fungus Trichoderma viride was introduced into broccoli(Brassica oleracea var. italica) by Agrobacterium-mediated transformation. Sixty-eight putative transformants were obtained and the presence of the Tch gene was confirmed by both PCR and Southern blot analysis. RT-PCR analysis showed an accumulation of the transcript encoding the endochitinase protein in the transgenic plants. Using real-time quantitative PCR, the expression profiling of endochitinase gene was analyzed. Primary transformants and selfed progeny were examined for expression of the endochitinase using a fluorometric assay and for their resistance to the pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The endochitinase activities in T0 in vitro plants, T0 mature plants and T1 mature plants were correlated with leaf lesions, and the transgenic line T618 had high endochitinse activities of 102.68, 114.53 and 120.27 nmol L–1 MU min–1 mg–1 protein in the three kinds of plants, respectively. The endochitinase activity showed a positive correlation with the resistance to the pathogens. Most transgenic T0 broccoli had increased resistance to the pathogens of B. cinerea and R. solani in leaf assays and this resistance was confirmed to be inheritable. These findings suggested that expression of the Tch gene from T. viride could enhance resistance to pathogenic fungi in Brassica species.