The delay arming process of initiating explosive ( IE ) brakes for fuse is complex and hard to be verified. A numerical simulation model of IE brakes was established based on the arbitrary La- grange-Euler method. T...The delay arming process of initiating explosive ( IE ) brakes for fuse is complex and hard to be verified. A numerical simulation model of IE brakes was established based on the arbitrary La- grange-Euler method. The model included the structure, the air filed, etc. The simulation boundary conditions were defined, including the contacts, blasting parameters of the explosive and the fluid- solid coupling interface. The simulation results show that the shear pin of the chosen IE can be cut off. When the piston needs to move 0.8 cm, the time set to the delay arming of the IE brakes model is about 40μS. The maximum displacement of the piston is 1. 17 cm. The model provides basis for parameters design and further improvement of IE brakes.展开更多
The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process...The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.展开更多
When you look for gas stations to refill yourcar’s tank in China,you will probably find only twobrands:China National Petroleum Corp(CNPC)and China Petroleum and Chemical Corp(SinopecGroup).But there will soon be a n...When you look for gas stations to refill yourcar’s tank in China,you will probably find only twobrands:China National Petroleum Corp(CNPC)and China Petroleum and Chemical Corp(SinopecGroup).But there will soon be a new player in themarket:"Shide."展开更多
To improve the characteristics of wet multi-disc brakes (WMDBs), the WMDBs of the drive axles of mining trucks were studied. A model was established to predict the phenomenon of drag characteristics during wet brake n...To improve the characteristics of wet multi-disc brakes (WMDBs), the WMDBs of the drive axles of mining trucks were studied. A model was established to predict the phenomenon of drag characteristics during wet brake non-engagement by considering the combined effect of surface grooves, film shrinkage, and laminar Navier-Stokes (N-S) equations. The model was used to study drag torque and temperature variation of the wet brakes for different volume flows, dynamic viscosities, and friction pair clearances. The simulation results indicated that the peak torque decreased when the clearance of the friction pair increased. Additionally, the peak torque increased when the volume flow increased and when the cooling liquid dynamic viscosity increased. The model was more accurate than a traditional forecasting system when considering the role of surface grooves and oil film shrinkage in actual working conditions.展开更多
In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and ...In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.展开更多
By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a ...By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided展开更多
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with...Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.展开更多
The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigat...The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.展开更多
Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscri...Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads.展开更多
A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solu...A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.展开更多
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geomet...Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.展开更多
As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferentia...As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case.展开更多
In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strat...In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost.展开更多
Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the probl...Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
China's Queqiao-2 Relay Satellite Enters Lunar Orbit China's Queqiao-2 relay satellite has successfully performed a near-moon braking procedure and entered its circumlunar orbit,according to the China National...China's Queqiao-2 Relay Satellite Enters Lunar Orbit China's Queqiao-2 relay satellite has successfully performed a near-moon braking procedure and entered its circumlunar orbit,according to the China National Space Administration(CNSA).At 12.46 a.m.(Beijing Time)on March 25,after approximately 112 flight hours,the satellite began near-moon braking at a distance of approximately 440 kilometers from the lunar surface and entered its circumlunar orbit 19 minutes later,the CNSA said.展开更多
ISO 24221:2024, Railway applications-Braking system-General requirements, the first of its kind, was recently released. With the leading efforts of National Railway Administration of China, China has made new breakthr...ISO 24221:2024, Railway applications-Braking system-General requirements, the first of its kind, was recently released. With the leading efforts of National Railway Administration of China, China has made new breakthrough in railway international standardization by the development of the international standard.展开更多
The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV...The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.展开更多
China’soutbound directinvestment (ODI) has recently experienced a surge as Chinese companies set their eyes overseas.By the end of 2010,China’s ODI in non-financial sectors had totaled$258.8 billion.
基金Supported by the National Natural Science Foundation of China(11372047)
文摘The delay arming process of initiating explosive ( IE ) brakes for fuse is complex and hard to be verified. A numerical simulation model of IE brakes was established based on the arbitrary La- grange-Euler method. The model included the structure, the air filed, etc. The simulation boundary conditions were defined, including the contacts, blasting parameters of the explosive and the fluid- solid coupling interface. The simulation results show that the shear pin of the chosen IE can be cut off. When the piston needs to move 0.8 cm, the time set to the delay arming of the IE brakes model is about 40μS. The maximum displacement of the piston is 1. 17 cm. The model provides basis for parameters design and further improvement of IE brakes.
基金supported by the National Research Centre[grant number DOBR/0046/R/ID1/2012/03]。
文摘The objective of the paper was to compare values of the muzzle brake efficiency coefficient for a rifle with active or inactive automatics systems.Special laboratory stand designed for investigating the recoil process was used.The motion of the rifle was detected by the use of the laser interferometer and the optical camera.The recoil velocity time courses were determined by smoothing and differentiation of experimental position records.The results of the experiments indicated that in the case of an active automatics system two values of the recoil velocity can be used for calculation of the energetic efficiency coefficient:the maximum recoil velocity and the final recoil velocity at the end of the automatics action cycle.The values of the coefficient,calculated using these two values of the recoil velocity,distinctly differ.However,it was shown that their values indicate the same relation between the efficiency of various muzzle brakes.The value of the efficiency coefficient,determined on the basis of the final recoil velocity value,is practically the same as that determined on the basis of the final recoil velocity value for the rifle with an inactive automatics system.
文摘When you look for gas stations to refill yourcar’s tank in China,you will probably find only twobrands:China National Petroleum Corp(CNPC)and China Petroleum and Chemical Corp(SinopecGroup).But there will soon be a new player in themarket:"Shide."
基金Supported by the National Natural Science Foundation of China(51375519)the Chongqing Graduate Education Innovation Fund Project(CYS18223)the Chongqing University of Arts and Sciences Graduate School Research Project(M2018ME16)
文摘To improve the characteristics of wet multi-disc brakes (WMDBs), the WMDBs of the drive axles of mining trucks were studied. A model was established to predict the phenomenon of drag characteristics during wet brake non-engagement by considering the combined effect of surface grooves, film shrinkage, and laminar Navier-Stokes (N-S) equations. The model was used to study drag torque and temperature variation of the wet brakes for different volume flows, dynamic viscosities, and friction pair clearances. The simulation results indicated that the peak torque decreased when the clearance of the friction pair increased. Additionally, the peak torque increased when the volume flow increased and when the cooling liquid dynamic viscosity increased. The model was more accurate than a traditional forecasting system when considering the role of surface grooves and oil film shrinkage in actual working conditions.
文摘In this study, the thermo-elastic effects of frictional heat generation in a disc brake system due to braking actions were simulated. The mathematical model that defined the problem was developed from the kinetic and potential energies of moving vehicles on the gradient surfaces. This problem was solved for the selected geometry of disc brake and pad with their material properties selected from existing literatures using the finite element method and the computational results were obtained. The thermal deformation obtained was in good agreement with similar literature results. Also, for the same braking period and conditions, the results showed that a vehicle ascending a hill gave a higher temperature rise, Von Mises stress and thermal deformation on brake contact surfaces than when descending hill. Therefore, the braking period required to bring a moving vehicle in ascendent motion to a lower speed is expected to be shorter because of the gravity effect than horizontal motion, while descendent motion requires longer braking period.
文摘By the numberical calculation of dynamic lining pressure distributions,temperature fields and thermal stress fields of steel plates,a method using nonlinear finite element techniques to analyze failure mechanism of a multiple disc wet brake is detailed ,and some measures for combatting these failures are provided
基金Supported by National Natural Science Foundation of China(Grant No.52275178)Fujian Provincial Natural Science Foundation of China(Grant Nos.2020J05115,2022J01073)Project National United Engineering Laboratory for Advanced Bearing Tribology,Henan University of Science and Technology of China(Grant No.202103).
文摘Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs.
基金supported by the Science and Technology Innovation Development Project of Yantai(No.2023ZDX016)。
文摘The increase in payload capacity of trucks has heightened the demand for cost-effective yet high performance brake discs.In this work,the thermal fatigue and wear of compacted graphite iron brake discs were investigated,aiming to provide an experimental foundation for achieving a balance between their thermal and mechanical properties.Compacted graphite iron brake discs with different tensile strengths,macrohardnesses,specific heat capacities and thermal diffusion coefficients were produced by changing the proportion and strength of ferrite.The peak temperature,pressure load and friction coefficient of compacted graphite iron brake discs were analyzed through inertia friction tests.The morphology of thermal cracks and 3D profiles of the worn surfaces were also discussed.It is found that the thermal fatigue of compacted graphite iron discs is determined by their thermal properties.A compacted graphite iron with the highest specific heat capacity and thermal diffusion coefficient exhibits optimal thermal fatigue resistance.Oxidization of the matrix at low temperatures significantly weakens the function of alloy strengthening in hindering the propagation of thermal cracks.Despite the reduced hardness,increasing the ferrite proportion can mitigate wear loss resulting from low disc temperatures and the absence of abrasive wear.
文摘Research into converting waste into viable eco-friendly products has gained global concern.Using natural fibres and pulverized metallic waste becomes necessary to reduce noxious environmental emissions due to indiscriminately occupying the land.This study reviews the literature in the broad area of green composites in search of materials that can be used in automotive brake pads.Materials made by biocomposite,rather than fossil fuels,will be favoured.A database containing the tribo-mechanical performance of numerous potential components for the future green composite was established using the technical details of bio-polymers and natural reinforcements.The development of materials with diverse compositions and varying proportions is now conceivable,and these materials can be permanently connected in fully regulated processes.This explanation demonstrates that all of these variables affect friction coefficient,resistance to wear from friction and high temperatures,and the operating life of brake pads to varying degrees.In this study,renewable materials for the matrix and reinforcement are screened to determine which have sufficient strength,coefficient of friction,wear resistance properties,and reasonable costs,making them a feasible option for a green composite.The most significant,intriguing,and unusual materials used in manufacturing brake pads are gathered in this review,which also analyzes how they affect the tribological characteristics of the pads.
基金supported by the Henan Provincial Science and Technology Research Project under Grant(152102310295).
文摘A novel approach for analyzing coupled vibrations between vehicles and bridges is presented,taking into account spatiotemporal effects and mechanical phenomena resulting fromvehicle braking.Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method.The method’s validity and reliability are substantiated through numerical examples.A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed,braking acceleration,braking location,and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed.The results show that vehicle braking significantly amplifies mid-span displacement and impact factor responses in comparison to uniform vehicular motion across the bridge.Notably,the influence of wheelto-bridge friction forces is of particular significance and cannot be overlooked.When the vehicle initiates braking near the middle of the span,both the mid-span displacement and impact factor of the bridge exhibit substantial increases,further escalating with higher braking acceleration.Under favorable road surface conditions,the midspan displacement and the impact factor during vehicle braking may exceed the design values stipulated by codes.It is important to note that road surface roughness exerts a more pronounced effect on the impact factor of the bridge in comparison to the effects of vehicle braking.
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
基金funded by the Science Foundation of China Academy of Railway Science,grant number 2020YJ175.
文摘Purpose–The electromechanical brake system is leading the latest development trend in railway braking technology.The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder.The tolerance leads to imprecise brake control,so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system.This paper aims to present improved variational mode decomposition(VMD)algorithm,which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.Design/methodology/approach–The VMD algorithm plays a pivotal role in the preliminary phase,employing mode decomposition techniques to decompose the motor speed signals.Afterward,the error energy algorithm precision is utilized to extract abnormal features,leveraging the practical intrinsic mode functions,eliminating extraneous noise and enhancing the signal’s fidelity.This refined signal then becomes the basis for fault analysis.In the analytical step,the cepstrum is employed to calculate the formant and envelope of the reconstructed signal.By scrutinizing the formant and envelope,the fault point within the electromechanical brake system is precisely identified,contributing to a sophisticated and accurate fault diagnosis.Findings–This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake(EMB)motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction.The signal is reconstructed according to the effective intrinsic mode functions(IMFS)component of removing noise,and the formant and envelope are calculated by cepstrum to locate the fault point.Experiments show that the empirical mode decomposition(EMD)algorithm can effectively decompose the original speed signal.After feature extraction,signal enhancement and fault identification,the motor mechanical fault point can be accurately located.This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.Originality/value–By using this improved VMD algorithm,the electromechanical brake system can precisely identify the rotational anomaly of the motor.This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled.Compared with the conventional motor diagnosis method,this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs.Moreover,the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.
基金supported by the National Key Research and Development Program of China(2020YFA0710901)the National Natural Science Foundation of China(12002395)Natural Science Foundation of Hunan Province(Grant No.2023JJ30643).
文摘As the velocity of a train increases,the corresponding air pumping power consumption of the brake discs increases proportionally.In the present experimental study,a standard axle-mounted brake disc with circumferential pillars was analyzed using a 1:1 scale model and a test rig in a wind tunnel.In particular,three upstream velocities were selected on the basis of earlier investigations of trains operating at 160,250,and 400 km/h,respectively.Moreover,3D steady computational fluid dynamics(CFD)simulations of the flow field were conducted to compare with the wind tunnel test outcomes.The results for a 3-car train at 180 km/h demonstrated:(1)good agreement between the air resistance torques obtained from the wind tunnel tests and the related numerical results,with differences ranging from 0.95%to 5.88%;(2)discrepancies ranging from 3.2 to 3.8 N·m;(3)cooling ribs contributing more than 60%of the air resistance torque;(4)the fast rotation of brake discs causing a significantly different flow field near the bogie area,resulting in 25 times more air pumping power loss than that obtained in the stationary brake-disc case.
基金funded by Project supported by the Natural Science Foundation of Gansu Province,China(Grant No.22JR5RA318).
文摘In order to fully utilize the regenerative braking energy of metro trains and stabilize the metro DC traction busbar voltage,a hybrid regenerative braking energy recovery system with a dual-mode power management strategy is proposed.Firstly,the construction of the hybrid regenerative braking energy recovery system is explained.Then,based on the power demand of low-voltage load in metro stations,a dual-mode power management strategy is proposed to allocate the reference power of each system according to the different working conditions,and the control methods of each system are set.Finally,the correctness and effectiveness of the dual-mode strategy are verified through simulation,and the proposed braking energy utilization scheme is compared with other singleform utilization schemes.The results illustrate that the hybrid system with the dual-mode strategy can effectively recycle the regenerative braking energy of metro train and inhibit the busbar voltage fluctuation;the proposed braking energy utilization scheme has certain advantages on energy recovery and DC bus voltage stabilization compared with other single-form schemes;the proposed power management strategy can correctly allocate the reference power of each system with a lower construction cost.
基金supported by the National Natural Science Foundation of China(Grant Nos.62173137,52172403,62303178).
文摘Reasonable distribution of braking force is a factor for a smooth,safe,and comfortable braking of trains.A dynamic optimal allocation strategy of electric-air braking force is proposed in this paper to solve the problem of the lack of consideration of adhesion difference of train wheelsets in the existing high-speed train electric-air braking force optimal allocation strategies.In this method,the braking strategy gives priority to the use of electric braking force.The force model of a single train in the braking process is analyzed to calculate the change of adhesion between the wheel and rail of each wheelset after axle load transfer,and then the adhesion of the train is estimated in real time.Next,with the goal of maximizing the total adhesion utilization ratio of trailer/motor vehicles,a linear programming distribution function is constructed.The proportional coefficient of adhesion utilization ratio of each train and the application upper limit of braking force in the function is updated according to the change time point of wheelset adhesion.Finally,the braking force is dynamically allocated.The simulation results of Matlab/Simulink show that the proposed algorithm not only uses the different adhesion limits of each trailer to reduce the total amount of braking force undertaken by the motor vehicle,but also considers the adhesion difference of each wheelset.The strategy can effectively reduce the risk and time of motor vehicles during the braking process and improve the stability of the train braking.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
文摘China's Queqiao-2 Relay Satellite Enters Lunar Orbit China's Queqiao-2 relay satellite has successfully performed a near-moon braking procedure and entered its circumlunar orbit,according to the China National Space Administration(CNSA).At 12.46 a.m.(Beijing Time)on March 25,after approximately 112 flight hours,the satellite began near-moon braking at a distance of approximately 440 kilometers from the lunar surface and entered its circumlunar orbit 19 minutes later,the CNSA said.
文摘ISO 24221:2024, Railway applications-Braking system-General requirements, the first of its kind, was recently released. With the leading efforts of National Railway Administration of China, China has made new breakthrough in railway international standardization by the development of the international standard.
文摘The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.
文摘China’soutbound directinvestment (ODI) has recently experienced a surge as Chinese companies set their eyes overseas.By the end of 2010,China’s ODI in non-financial sectors had totaled$258.8 billion.