期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Molecular Application of a State Specific Multi-Reference Brillouin-Wigner Perturbation Theory
1
作者 H.Aksu 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第2期22-25,共4页
The single reference second order Brillouin-Wigner perturbation theory recently developed, which eliminates its size-extensivity error, has been generalized to state-specific, multi-reference (SS-MR), BWPT2 providin... The single reference second order Brillouin-Wigner perturbation theory recently developed, which eliminates its size-extensivity error, has been generalized to state-specific, multi-reference (SS-MR), BWPT2 providing a size-extensive correction to the electron correlation problem for systems that demand the use of a multi-reference function. Illustrative numerical tests of the size-extensivity corrections are made for widely used molecules in their ground states, which are pronounced multi-reference characteristics. We have implemented two-reference and three-reference cases for CH2, BH and bond breaking process in the ground states of HF molecules. The results are compared with the rigorously size-extensive methods such as the M^ller-Plesset perturbation theory, i.e., MP2, full configuration interaction (Full-CI) and allied methods using the same basis sets. 展开更多
关键词 of in Molecular Application of a State Specific Multi-Reference brillouin-wigner Perturbation Theory FCI CCSD CISD RHF MRCI CASSCF for been MP is
原文传递
关于第n布里渊区体积等于倒格子原胞体积的证明 被引量:4
2
作者 邵华圣 《大学物理》 北大核心 2009年第2期54-56,共3页
通过证明Wigner-Seitz原胞的体积等于原胞体积,说明第一布里渊区体积等于倒格子原胞体积;对于第n布里渊区和第n-1布里渊区建立保长同胚映射证明两者体积相等.
关键词 布里渊区 保长同胚 反演对称性 Wigner—Seitz原胞
下载PDF
布里渊区与倒格子原胞 被引量:3
3
作者 李进 李光惠 《大学物理》 1997年第1期29-31,共3页
用简单数学方法就体心立方晶格和面心立方晶格证明了三维情况下布里渊区体积等于倒格子原胞体积.同时提出证明高阶布里渊区与简约布里渊区体积相等的一种简捷方法.
关键词 布里渊区 倒格子原胞 原胞 晶格
下载PDF
Topological magnon insulator with Dzyaloshinskii–Moriya interaction under the irradiation of light
4
作者 Liang Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期538-541,共4页
The topological magnon insulator on a honeycomb lattice with Dzyaloshinskii–Moriya interaction(DMI) is studied under the application of a circularly polarized light.At the high-frequency regime, the effective tight-b... The topological magnon insulator on a honeycomb lattice with Dzyaloshinskii–Moriya interaction(DMI) is studied under the application of a circularly polarized light.At the high-frequency regime, the effective tight-binding model is obtained based on Brillouin–Wigner theory.Then, we study the corresponding Berry curvature and Chern number.In the Dirac model, the interplay between a light-induced handedness-dependent effective DMI and intrinsic DMI is discussed. 展开更多
关键词 MAGNON LIGHT Brillouin–Wigner theory Dzyaloshinskii–Moriya
原文传递
金属晶体结构的体积解
5
作者 吴拓 《肇庆学院学报》 1997年第2期9-15,共7页
本文根据晶体结构的周期性,求解出金属晶体结构的正格子原胞、倒格子原胞、维格纳—赛茨原胞和布里渊区以及金属晶体的两种典型晶格:体心立方晶格、面心立方晶格的体积,并探求出它们的几何关系。
关键词 晶格结构 正格子原胞 倒格子原胞 维格纳-赛茨原胞 布里渊区
下载PDF
A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions 被引量:1
6
作者 Wen-Ge Wang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第7期861-868,共8页
We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenen... We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenenergies.The method is based on a generalized Brillouin-Wigner perturbation theory.Each flow is specific for a given energy and,at each step of the flow,a finite subspace of the Hilbert space is decimated in order to obtain a renormalized Hamiltonian for the next step.Eigenenergies of the original Hamiltonian appear as unstable fixed points of renormalized flows.Numerical illustration of the method is given in the Wigner-band random-matrix model. 展开更多
关键词 generalized brillouin-wigner perturbation theory HAMILTONIAN FLOW EIGENFUNCTION structure EIGENVALUE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部