期刊文献+
共找到212篇文章
< 1 2 11 >
每页显示 20 50 100
Fuzzy C-Means Algorithm Based on Density Canopy and Manifold Learning
1
作者 Jili Chen Hailan Wang Xiaolan Xie 《Computer Systems Science & Engineering》 2024年第3期645-663,共19页
Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced ... Fuzzy C-Means(FCM)is an effective and widely used clustering algorithm,but there are still some problems.considering the number of clusters must be determined manually,the local optimal solutions is easily influenced by the random selection of initial cluster centers,and the performance of Euclid distance in complex high-dimensional data is poor.To solve the above problems,the improved FCM clustering algorithm based on density Canopy and Manifold learning(DM-FCM)is proposed.First,a density Canopy algorithm based on improved local density is proposed to automatically deter-mine the number of clusters and initial cluster centers,which improves the self-adaptability and stability of the algorithm.Then,considering that high-dimensional data often present a nonlinear structure,the manifold learning method is applied to construct a manifold spatial structure,which preserves the global geometric properties of complex high-dimensional data and improves the clustering effect of the algorithm on complex high-dimensional datasets.Fowlkes-Mallows Index(FMI),the weighted average of homogeneity and completeness(V-measure),Adjusted Mutual Information(AMI),and Adjusted Rand Index(ARI)are used as performance measures of clustering algorithms.The experimental results show that the manifold learning method is the superior distance measure,and the algorithm improves the clustering accuracy and performs superiorly in the clustering of low-dimensional and complex high-dimensional data. 展开更多
关键词 Fuzzy c-means(FCM) cluster center density canopy ISOMAP clustering
下载PDF
Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss
2
作者 Thanh-Lam Nguyen HaoKao +2 位作者 Thanh-Tuan Nguyen Mong-Fong Horng Chin-Shiuh Shieh 《Computers, Materials & Continua》 SCIE EI 2024年第2期2181-2205,共25页
Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications i... Since its inception,the Internet has been rapidly evolving.With the advancement of science and technology and the explosive growth of the population,the demand for the Internet has been on the rise.Many applications in education,healthcare,entertainment,science,and more are being increasingly deployed based on the internet.Concurrently,malicious threats on the internet are on the rise as well.Distributed Denial of Service(DDoS)attacks are among the most common and dangerous threats on the internet today.The scale and complexity of DDoS attacks are constantly growing.Intrusion Detection Systems(IDS)have been deployed and have demonstrated their effectiveness in defense against those threats.In addition,the research of Machine Learning(ML)and Deep Learning(DL)in IDS has gained effective results and significant attention.However,one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks.These attacks,which are not encountered during the system’s training,can lead to misclassification with significant errors.In this research,we focused on addressing the issue of Unknown Attack Detection,combining two methods:Spatial Location Constraint Prototype Loss(SLCPL)and Fuzzy C-Means(FCM).With the proposed method,we achieved promising results compared to traditional methods.The proposed method demonstrates a very high accuracy of up to 99.8%with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset(CICIDS2017)dataset.Particularly,the accuracy is also very high,reaching 99.7%,and the precision goes up to 99.9%for unknown DDoS attacks on the DDoS Evaluation Dataset(CICDDoS2019)dataset.The success of the proposed method is due to the combination of SLCPL,an advanced Open-Set Recognition(OSR)technique,and FCM,a traditional yet highly applicable clustering technique.This has yielded a novel method in the field of unknown attack detection.This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity.Finally,implementing the proposed method in real-world systems can enhance the security capabilities against increasingly complex threats on computer networks. 展开更多
关键词 CYBERSECURITY DDoS unknown attack detection machine learning deep learning incremental learning convolutional neural networks(CNN) open-set recognition(OSR) spatial location constraint prototype loss fuzzy c-means CICIDS2017 CICDDoS2019
下载PDF
基于优化模糊C-means算法的不平衡大数据分类研究
3
作者 卓柳俊 曾心怡 《信息技术》 2024年第10期14-21,29,共9页
针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的... 针对不平衡大数据的分类问题,提出一种优化模糊C-means算法的不平衡大数据分类算法。先计算C-means模糊交叉算子,定义优化函数,并求解大数据不平衡增益。利用Spark分类平台,确定大数据样本压缩模糊近邻值的取值范围,再通过放大近邻值的处理方式,定义不平衡阈向量,从而完善整个分类流程,完成基于优化模糊C-means算法的不平衡大数据分类方法的设计。实验结果表明,上述分类方法的应用,可将正例信息、负例信息的取样长度区间完全分离开来,能有效解决因不平衡大数据分类不精准造成的信息样本混淆的问题,符合实际应用需求。 展开更多
关键词 优化模糊c-means算法 不平衡大数据 交叉算子 卡方检验 压缩模糊近邻值
下载PDF
基于BP神经网络和C-Means聚类算法的水下导航适配区分类预测
4
作者 孙逸诺 舒洪博 +2 位作者 赵可欣 王佳峻 蒋栾坤 《中文科技期刊数据库(全文版)自然科学》 2024年第6期0107-0112,共6页
在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同... 在国家明确强调“海洋强国”战略部署的时代背景下,适配区分类预测技术是解决水下导航与定位问题的核心技术。因此,研发基于重力异常数据的水下导航适配区分类预测模型,对于提高导航可靠性与精准度具有关键性的技术意义。本文针对不同区域的重力异常特征分布不同,首先提出一种基于C-Means聚类算法的区域适配性标定方法,通过将海域划分为五类,对各区域进行适配性标定。然后,在此基础上,本文提出一种基于BP神经网络的适配区分类预测方法,对区域适配度进行预测。实验结果表明,本文提出的预测模型在训练集中的预测精度达到99%,而在测试集中模型的预测精度达到97%。由此可见本文提出的预测模型具有较好的迁移性能,能够帮助水下航行器进行精准定位。 展开更多
关键词 三次样条插值法 c-means 聚类算法 BP 神经网络模型 分类预测
下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
5
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy c-means shadowed sets shadowed c-means feature weights cluster validity index
下载PDF
Fuzzy c-means text clustering based on topic concept sub-space 被引量:3
6
作者 吉翔华 陈超 +1 位作者 邵正荣 俞能海 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期439-442,共4页
To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Con... To improve the accuracy of text clustering, fuzzy c-means clustering based on topic concept sub-space (TCS2FCM) is introduced for classifying texts. Five evaluation functions are combined to extract key phrases. Concept phrases, as well as the descriptions of final clusters, are presented using WordNet origin from key phrases. Initial centers and membership matrix are the most important factors affecting clustering performance. Orthogonal concept topic sub-spaces are built with the topic concept phrases representing topics of the texts and the initialization of centers and the membership matrix depend on the concept vectors in sub-spaces. The results show that, different from random initialization of traditional fuzzy c-means clustering, the initialization related to text content contributions can improve clustering precision. 展开更多
关键词 TCS2FCM topic concept space fuzzy c-means clustering text clustering
下载PDF
ALLIED FUZZY c-MEANS CLUSTERING MODEL 被引量:2
7
作者 武小红 周建江 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第3期208-213,共6页
A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive... A novel model of fuzzy clustering, i.e. an allied fuzzy c means (AFCM) model is proposed based on the combination of advantages of fuzzy c means (FCM) and possibilistic c means (PCM) clustering. PCM is sensitive to initializations and often generates coincident clusters. AFCM overcomes this shortcoming and it is an ex tension of PCM. Membership and typicality values can be simultaneously produced in AFCM. Experimental re- suits show that noise data can be well processed, coincident clusters are avoided and clustering accuracy is better. 展开更多
关键词 fuzzy c-means clustering possibilistic c means clustering allied fuzzy c-means clustering
下载PDF
基于模糊C-means的多视角聚类算法 被引量:2
8
作者 杨欣欣 黄少滨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2128-2133,共6页
目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构... 目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构数据集的聚类结果。FCM-MVC算法同时利用多个视角信息,自动计算每个视角的权重。研究结果表明:FCM-MVC算法能够有效处理具有聚簇重叠结构的数据集;与已有的3种经典的多视角聚类算法相比,该算法获得的聚类精度更高。 展开更多
关键词 多视角聚类 模糊c-means 数据挖掘
下载PDF
可能性C-Means聚类算法的仿真实验 被引量:7
9
作者 吕佳 《重庆师范大学学报(自然科学版)》 CAS 2005年第3期129-132,共4页
关键词 c-means 聚类算法 仿真技术 可能性 模糊算法
下载PDF
HSI空间和改进C-means的彩色人民币号码分割方法 被引量:2
10
作者 闵晶妍 陈红兵 《光电工程》 CAS CSCD 北大核心 2012年第1期119-124,共6页
针对采集到的人民币号码图像都是彩色图像并携带有噪声这一现象,本文提出基于HSI空间和改进的C-means算法的人民币彩色号码图像分割方法。选用HSI颜色空间作为彩色分割空间,在HSI空间内,将HSI的3-D搜索问题转化为3个1-D的搜索问题,求取... 针对采集到的人民币号码图像都是彩色图像并携带有噪声这一现象,本文提出基于HSI空间和改进的C-means算法的人民币彩色号码图像分割方法。选用HSI颜色空间作为彩色分割空间,在HSI空间内,将HSI的3-D搜索问题转化为3个1-D的搜索问题,求取图像在3个1-D方向上的灰度直方图,该方法根据图像当前点3×3邻域内每个像素灰度值与当前点灰度值差值的大小情况,确定聚类算法中当前点的灰度值p(m)的值,采用C-means聚类算法分别确定文字和非文字的聚类中心,利用欧式距离进行人民币号码前景和背景的聚类判断。该方法直接对彩色人民币号码图像进行分割,考虑了当前点与邻域像素点之间的相互关系,具有一定的自适应性。实验结果表明,提出的号码图像分割方法不受图像噪声和局部边缘变化的影响,且变换后数据量减少,易于计算,该方法对字母和数字的分割都有效,鲁棒性较强。 展开更多
关键词 人民币号码图像 HSI c-means聚类 彩色图像分割
下载PDF
基于模糊c-means算法的空间数据分类和预测 被引量:3
11
作者 胡彩平 秦小麟 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1183-1188,共6页
空间分类和预测是空间数据挖掘中一个非常重要的方法,但对它们的研究目前尚处于初始阶段.通过引入空间对象对模糊聚类的模糊隶属度的概念,提出了基于模糊c-means算法的空间数据分类和预测的方法(SFCM).该方法首先用模糊c-means方法对数... 空间分类和预测是空间数据挖掘中一个非常重要的方法,但对它们的研究目前尚处于初始阶段.通过引入空间对象对模糊聚类的模糊隶属度的概念,提出了基于模糊c-means算法的空间数据分类和预测的方法(SFCM).该方法首先用模糊c-means方法对数据集论域空间进行聚类,但由于空间数据具有空间自相关的特性,在用模糊c-means算法进行空间聚类时加入了空间信息.然后计算每个空间对象对所有聚类的模糊隶属度并从中找出模糊隶属度最大的聚类.最后用该聚类中心对象的因变量的值作为该空间对象的因变量的估计值.理论分析和实验结果表明,该算法是有效可行的. 展开更多
关键词 模糊c-means算法 模糊隶属度 空间自相关 空间数据挖掘 空间分类和预测
下载PDF
基于模糊C-means聚类的地球化学数据分析 被引量:1
12
作者 孟海东 管世明 徐贯东 《金属矿山》 CAS 北大核心 2012年第4期106-108,143,共4页
采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够... 采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够客观、有效地发现地球化学元素的组合特征。同时,对位于内蒙古地区某多金属成矿带的地球化学采样数据进行了分析,根据聚类结果推断该地区是寻找金、银多金属矿产资源的目标区域。 展开更多
关键词 数据挖掘 模糊c-means聚类 地球化学元素 元素组合特征
下载PDF
C-means-based ant colony algorithm for TSP
13
作者 吴隽 李文锋 陈定方 《Journal of Southeast University(English Edition)》 EI CAS 2007年第S1期156-160,共5页
To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of conver... To solve the traveling salesman problem with the characteristics of clustering,a novel hybrid algorithm,the ant colony algorithm combined with the C-means algorithm,is presented.In order to improve the speed of convergence,the traveling salesman problem(TSP)data is specially clustered by the C-means algorithm,then,the result is processed by the ant colony algorithm to solve the problem.The proposed algorithm treats the C-means algorithm as a new search operator and adopts a kind of local searching strategy—2-opt,so as to improve the searching performance.Given the cluster number,the algorithm can obtain the preferable solving result.Compared with the three other algorithms—the ant colony algorithm,the genetic algorithm and the simulated annealing algorithm,the proposed algorithm can make the results converge to the global optimum faster and it has higher accuracy.The algorithm can also be extended to solve other correlative clustering combination optimization problems.Experimental results indicate the validity of the proposed algorithm. 展开更多
关键词 traveling salesman problem ant colony optimization c-means characteristics of clustering
下载PDF
一种基于蚁群算法和C-Means算法的图像分割方法 被引量:2
14
作者 叶志伟 《软件导刊》 2007年第7期106-108,共3页
针对传统C-Means算法在图像分割应用中的缺陷,本文提出一种蚁群算法(Ant Colony Optimization ACO)融合C-Means算法的图像聚类分割方法,它融合了C-Means算法和蚁群算法的优点,比传统的C-Means算法能得到更好的分割质量。实际图像分割试... 针对传统C-Means算法在图像分割应用中的缺陷,本文提出一种蚁群算法(Ant Colony Optimization ACO)融合C-Means算法的图像聚类分割方法,它融合了C-Means算法和蚁群算法的优点,比传统的C-Means算法能得到更好的分割质量。实际图像分割试验结果表明该方法是一种良好的图像分割新方法。 展开更多
关键词 蚁群算法 c-means 图像分割
下载PDF
基于Hadoop二阶段并行模糊c-Means聚类算法
15
作者 胡吉朝 黄红艳 《计算机应用与软件》 CSCD 2016年第6期282-286,共5页
针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduc... 针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法;最后,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。在此基础上,利用人造大数据测试集和KDD CUP 99入侵测试集进行仿真,实验结果表明,该算法既能保证聚类精度要求又可有效加快算法运行效率。 展开更多
关键词 二阶段 模糊c-means 大数据 聚类 并行 入侵检测
下载PDF
基于蚁群算法和C-means算法的图像分割方法
16
作者 吴小菁 陈星娥 《长春师范学院学报(自然科学版)》 2013年第5期28-29,22,共3页
在计算机飞速发展的背景下,计算机的图像处理技术渗入到各个行业中。图像分割作为一种基本的图像处理技术,它的目的是把图像分成各具特征的区域,从中提取感兴趣的技术。针对以前的C-means算法在图像分割应用中的缺陷,本文提出了新的基... 在计算机飞速发展的背景下,计算机的图像处理技术渗入到各个行业中。图像分割作为一种基本的图像处理技术,它的目的是把图像分成各具特征的区域,从中提取感兴趣的技术。针对以前的C-means算法在图像分割应用中的缺陷,本文提出了新的基于蚁群算法和C-means算法相结合的新型图像分割方法,它和蚁群算法以及C-means算法相比,具有明显的优点,能够获得更好的分割质量。 展开更多
关键词 蚁群算法 c-means算法 图像分割方法 分析
下载PDF
半监督平衡化模糊C-means聚类 被引量:2
17
作者 朱乐为 胡恩良 《云南民族大学学报(自然科学版)》 CAS 2019年第3期278-284,共7页
传统模糊C-means聚类(FCM,fuzzy C-means)在处理非平衡数据集时,由于相异类中所含样本数量差异较大,导致类间权值不平衡和"均匀效应",从而易产生聚类错误.另外,FCM属于无监督方法,无法更好地利用已知的部分类标记信息引导聚类... 传统模糊C-means聚类(FCM,fuzzy C-means)在处理非平衡数据集时,由于相异类中所含样本数量差异较大,导致类间权值不平衡和"均匀效应",从而易产生聚类错误.另外,FCM属于无监督方法,无法更好地利用已知的部分类标记信息引导聚类.为解决这两方面问题,提出一种半监督的平衡化模糊C-means聚类(SBFCM,semi-supervised balanced fuzzy C-means)方法.SBFCM在FCM目标函数的基础上加入了对聚类模糊隶属度矩阵的近似正交约束和半监督约束,从而得到了新的聚类目标函数.实验结果表明,相比于FCM,SBFCM能有效缓解由"均匀效应"导致的聚类错误现象,并能有效地利用部分先验类标记信息,从而可获得更好的聚类效果. 展开更多
关键词 模糊c-means 类不平衡问题 正交约束 半监督信息 聚类纯度
下载PDF
Fuzzy c-means clustering based on spatial neighborhood information for image segmentation 被引量:15
18
作者 Yanling Li Yi Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期323-328,共6页
Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the im... Fuzzy c-means (FCM) algorithm is one of the most popular methods for image segmentation. However, the standard FCM algorithm is sensitive to noise because of not taking into account the spatial information in the image. An improved FCM algorithm is proposed to improve the antinoise performance of FCM algorithm. The new algorithm is formulated by incorporating the spatial neighborhood information into the membership function for clustering. The distribution statistics of the neighborhood pixels and the prior probability are used to form a new membership func- tion. It is not only effective to remove the noise spots but also can reduce the misclassified pixels. Experimental results indicate that the proposed algorithm is more accurate and robust to noise than the standard FCM algorithm. 展开更多
关键词 image segmentation fuzzy c-means spatial informa- tion. robust.
下载PDF
A New Method of Wind Turbine Bearing Fault Diagnosis Based on Multi-Masking Empirical Mode Decomposition and Fuzzy C-Means Clustering 被引量:11
19
作者 Yongtao Hu Shuqing Zhang +3 位作者 Anqi Jiang Liguo Zhang Wanlu Jiang Junfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第3期156-167,共12页
Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and ... Based on Multi-Masking Empirical Mode Decomposition (MMEMD) and fuzzy c-means (FCM) clustering, a new method of wind turbine bearing fault diagnosis FCM-MMEMD is proposed, which can determine the fault accurately and timely. First, FCM clustering is employed to classify the data into different clusters, which helps to estimate whether there is a fault and how many fault types there are. If fault signals exist, the fault vibration signals are then demodulated and decomposed into different frequency bands by MMEMD in order to be analyzed further. In order to overcome the mode mixing defect of empirical mode decomposition (EMD), a novel method called MMEMD is proposed. It is an improvement to masking empirical mode decomposition (MEMD). By adding multi-masking signals to the signals to be decomposed in different levels, it can restrain low-frequency components from mixing in highfrequency components effectively in the sifting process and then suppress the mode mixing. It has the advantages of easy implementation and strong ability of suppressing modal mixing. The fault type is determined by Hilbert envelope finally. The results of simulation signal decomposition showed the high performance of MMEMD. Experiments of bearing fault diagnosis in wind turbine bearing fault diagnosis proved the validity and high accuracy of the new method. 展开更多
关键词 Wind TURBINE BEARING FAULTS diagnosis Multi-masking empirical mode decomposition (MMEMD) Fuzzy c-mean (FCM) clustering
下载PDF
Soil pore identification with the adaptive fuzzy C-means method based on computed tomography images 被引量:5
20
作者 Yue Zhao Qiaoling Han +1 位作者 Yandong Zhao Jinhao Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第3期1043-1052,共10页
The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically an... The complex geometry and topology of soil is widely recognised as the key driver in many ecological processes. X-ray computed tomography (CT) provides insight into the internal structure of soil pores automatically and accurately. Until recently, there have not been methods to identify soil pore structures. This has restricted the development of soil science, particularly regarding pore geometry and spatial distribution. Through the adoption of the fuzzy clustering theory and the establishment of pore identification rules, a novel pore identification method is described to extract pore structures from CT soil images. The robustness of the adaptive fuzzy C-means method (AFCM), the adaptive threshold method, and Image-Pro Plus tools were compared on soil specimens under different conditions, such as frozen, saturated, and dry situations. The results demonstrate that the AFCM method is suitable for identifying pore clusters, especially tiny pores, under various soil conditions. The method would provide an optional technique for the study of soil micromorphology. 展开更多
关键词 CT soil IMAGES FUZZY c-means FUZZY clustering theory PORE IDENTIFICATION rule
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部