A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activit...A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.展开更多
Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo b...Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LCs0 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 rag/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development of in vivo bioassays.展开更多
Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, inter...Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, intermediate in leaves and minimum in stems. Thallium, especially at higher concentrations, adversely affected photosynthesis (as judged based on chlorophyll fluorescence parameters), suggesting inhibition of photo-activation of PSII (Photosystems II), and also decreased the rate of photosynthesis, the rate of transpiration and stomatal conductivity drastically. Exposure to TI also increased the activity of CAT (Catalase) (except at 1 μg/L) and POD (Peroxidase) (except at 0.2 μg/L), suggesting that the antioxidant systems in Coix lacryma-jobi were the main contributors of CAT and SOD (Superoxide Dismutase) and that the tolerance of C. lacryma-jobi to T1 is mainly due to this induced antioxidant machinery.展开更多
A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense(weight of 0.3–0.4 g) and its effect role on antioxidant activity.Prawns were fed w...A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense(weight of 0.3–0.4 g) and its effect role on antioxidant activity.Prawns were fed with seven levels of vitamin E(0,25,50,75,100,200,and 400 mg/kg diet) for 60 days.The results show that dietary vitamin E supplementation could significantly increased the prawn weight( P <0.05).The activity of superoxide dismutase(SOD) in the hepatopancreas was significantly higher in prawns fed with diets supplemented with ≤75 mg/kg vitamin E than in those fed with diets supplemented with 100–400 mg/kg vitamin E( P <0.05).The activity of catalase(CAT) in the hepatopancreas decreased significantly as dietary vitamin E supplementation increased( P <0.05),and no significant difference was detected in glutathione peroxidase(GSH-Px) activity between different dietary groups( P >0.05).The contents of vitamin E in the hepatopancreas and in the muscle increased with increasing dietary vitamin E.There was a linear correlation between the vitamin E level in diet and that in muscle,and between the vitamin E level in diet and that in the hepatopancreas.All the above results indicated that dietary vitamin E can be stored in the hepatopancreas and muscle and lower both the activities of SOD and CAT in the hepatopancreas,suggesting that it is a potential antioxidant in M.nipponense.Broken line analysis conducted on the weight gains of prawns in each diet group showed that the dietary vitamin E requirement for maximum growth is 94.10 mg/kg.展开更多
Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) e...Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.展开更多
The present investigation was carried out to investigate the effect of heat stress and revival on some antioxidative enzymes and metabolites in leaves of the wheat (Triticum aestivum L.) seedlings of heat susceptib...The present investigation was carried out to investigate the effect of heat stress and revival on some antioxidative enzymes and metabolites in leaves of the wheat (Triticum aestivum L.) seedlings of heat susceptible (cv. WH 147 and HS 277) and heat tolerant (cv. WH 1021 and HW 2045) cultivars. Seven days old seedlings grown at 25 ℃ were exposed to 40 ℃ for 6 h and these seedlings were again brought to 25 ℃. The observations were recorded in the leaves of control, stressed and revived seedlings on 2nd and 4th day of revival. For the selection ofthermo-tolerant cultivars, screening of the thirty-six cultivars was done based on wilting of primary leaf and values of chlorophyll fluorescence. The MDA (malondialdehyde) and H2O2 concentration in leaves of wheat seedlings increased at the high temperature. There was enhancement in the activities of antioxidative enzymes, viz. CAT (catalase), POX (peroxidase), GR (glutathione reductase) and APX (ascorbate peroxidase) in leaves of the tolerant and susceptible cultivars under heat stress, however, higher percent increase was observed in tolerant cultivars. Heat stress increased the SOD (superoxide dismutase) activity in tolerant cultivars but activity declined in susceptible cultivars. On revival, the activities of the CAT, POX and GR declined in comparison to stressed seedlings but remained higher as compared to control. Ascorbate peroxidase activity remained higher on 2nd day and 4th day of revival in all the cultivars.展开更多
The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worm...The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worms were exposed to copper,zinc and cadmium solutions at different concentrations,and the activity of three antioxidant enzymes,catalase(CAT),superoxide dismutase(SOD),and glutathione peroxidase(GPX),and MDA content were measured.The results show that the activity of each enzyme changed immediately after exposure to heavy metals.CAT was invariably inhibited throughout the experimental period,while the SOD activity was significantly elevated by exposure to Cu^(2+) for 48h,but then decreased.SOD was inhibited by Zn^(2+) during the first 12h of exposure,but activated when exposed for longer periods.Under Cd^(2+) stress,SOD activity decreased within 72h.GPX activity varied greatly,being significantly increased by both Cu^(2+) and Zn^(2+),but significantly inhibited by Cd^(2+) in the first 12-24h after exposure.MDA content increased on Cu^(2+) exposure,but normally decreased on Zn^(2+) exposure.MDA content followed an increase-decrease-increase pattern under Cd^(2+) stress.In conclusion,the antioxidant system of this nemertean is sensitive to heavy metals,and its CAT activity may be a potential biomarker for monitoring heavy metal levels in the environment.展开更多
Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ...Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), as well as a non-enzymatic antioxidant malondialdehyde (MDA), in the liver were measured 3, 7, 14 and 21 d post exposure (dpe) to 0.02 (1/100 of acute toxicity), 0.036 (monitored concentration), 0.08 (1/20 of acute toxicity), 0.16 (1/10 of acute toxicity) and 0.32 mg/L (1/5 of acute toxicity) boscalid using a semi-static method. [Result] SOD, CAT, POD, GPx and MDA activity in the liver of zebrafish varied with boscalid concentration and exposure time. Boscalid significantly enhanced MDA content at 21 dpe. A significant upregulation of the activity of SOD, CAT, POD and GPx at 7 dpe was observed, suggesting that boscalid resulted in oxidative stress and lipid peroxidation. [Conclusion] These results show that these biomarkers are all appropriate for monitoring oxidative stress and the lipid peroxidation status of fish after exposure to boscalid. Key words Boscalid; Zebrafish; Antioxidant enzyme展开更多
Arbuscular mycorrhizal (AM)-mediated plant physiological activities could contribute to plant salt tolerance. However, the biochemical mechanism by which AM fungi enhance salt tolerance of halophytie plants is uncle...Arbuscular mycorrhizal (AM)-mediated plant physiological activities could contribute to plant salt tolerance. However, the biochemical mechanism by which AM fungi enhance salt tolerance of halophytie plants is unclear. A pot experiment was conducted to determine whether salt tolerance of the C3 halophyte Suaeda salsa was enhanced by the AM fungus Glomus rnosseae. When 60-day-old S. salsa seedlings were subjected to 400 mmol L-1 NaC1 stress for 35 days, plant height, number of leaves and branches, shoot and root biomass, and root length of G. mosseae-colonized seedlings were significantly greater than those of the nonmycorrizal seedlings. Leaf superoxide dismutase (SOD) activity at all sampling times (weekly for 35 days after salt stress was initiated) and leaf catalase (CAT) activity at 2 and 3 weeks after salt stress was initiated were also significantly enhanced in G. mosseae-colonized S. salsa seedlings, while the content of leaf malondialdehyde (MDA), a product of membrane lipid peroxidation, was significantly reduced, indicating an alleviation of oxidative damage. The corresponding leaf isoenzymes of SOD (Fe-SOD, Cu/Zn-SOD1, and Cu/Zn-SOD2) and CAT (CAT1 and CAT2) were also significantly increased in the mycorrhizal seedlings after 14 days of 400 mmol L-1 NaC1 stress. Our results suggested that G. rnosseae increased salt tolerance by increasing SOD and CAT activities and forming SOD and CAT isoforms in S. salsa seedlings.展开更多
基金Supported by the Guangdong Province Science & Technology Project(No.2010B020201014)the Guangdong Province Education Department(No.GCZX-A0909)+2 种基金the Guangdong Province Ocean and Fisheries Science & Technology Extension Project(No.20120980)the Guangdong Province Industry-University-Science Partnership Project(No.20110908)the Sci & Tech Plan of Huaiyin Normal University(No.00wh0031)
文摘A central composite experimental design and response surface method were used to investigate the combined effects of water temperature(18–34℃) and copper ion concentration(0.1–1.5 mg/L) on the catalase(CAT) activity in the digestive gland of C rassostrea ariakensis. The results showed that the linear effects of temperature were significant(P <0.01), the quadratic effects of temperature were significant( P <0.05), the linear effects of copper ion concentration were not significant(P >0.05), and the quadratic effects of copper ion concentration were significant(P <0.05). Additionally, the synergistic effects of temperature and copper ion concentration were not significant(P >0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.
基金Supported by the National Natural Science Foundation of China (No.31101885)Shanghai Rising-Star Program(No.10QA1403200)+3 种基金Innovation Program of Shanghai Municipal Education Commission (No.10YZ123)"Chen Guang" Project(No.09CG54) supported by the Shanghai Municipal Education Commission and the Shanghai Education Development FoundationLeading Academic Discipline Project of the Shanghai Municipal Education Commission(No.J50701,Marine Biology)the Special Research Funds for Selection and Cultivation of Outstanding Young Teachers of Shanghai Universities(No.SSC09002)
文摘Many aquatic organisms are negatively affected by exposure to high copper concentrations. We investigated the biochemical response of the mussel Mytilus coruscus (Mytiloida: Mytilidae) to copper exposure. In vivo bioassays using M. coruscus and different copper concentrations were conducted. The activity of six biomarkers, namely superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP), alkaline phosphatase (AKP), glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were measured. Survival rates decreased with increased copper concentrations and exposure times. The LCs0 values at 48, 72, and 96 h exposure were 0.48, 0.37, and 0.32 rag/L, respectively. Within digestive glands, CAT activity increased with increasing Cu concentrations. The activity of AKP showed no significant change, while the remaining four enzymes showed decreasing activity with increasing Cu concentrations. Within the gills, AKP activity increased when the Cu concentration was 0.05 mg/L, but showed no significant changes at higher concentrations. Activity of CAT and ACP within gills tended to decrease with increasing Cu concentration. The activity of SOD and GPT decreased at an exposure concentration of 0.2 mg/L. GOT activity within gills decreased at 0.1 mg/L and increased at an exposure concentration of 0.2 mg/L. Within the adductor muscle, AKP activity increased at 0.05 mg/L but did not change at higher exposure concentrations. ACP activity within adductor muscle tissue showed no change, while activities of CAT, GOT and GPT decreased with increasing Cu concentrations. SOD activity within the adductor muscle tissue significantly decreased at the 0.02, 0.05 and 0.2 mg/L exposure concentrations. Our results show tissue specific differences for the six biomarkers in for M. coruscus. Our findings provide the basis for the establishment of reference activity levels against which biomarker changes can be estimated, and are essential preliminary steps in development of in vivo bioassays.
文摘Levels of T1 (Thallium) in soil from 0 (control) to 50 μg/L through 0.2, 0.5, 1 and 2.5μg/L were directly and positively correlated to levels of T1 in plant tissue, the accumulation being maximum in roots, intermediate in leaves and minimum in stems. Thallium, especially at higher concentrations, adversely affected photosynthesis (as judged based on chlorophyll fluorescence parameters), suggesting inhibition of photo-activation of PSII (Photosystems II), and also decreased the rate of photosynthesis, the rate of transpiration and stomatal conductivity drastically. Exposure to TI also increased the activity of CAT (Catalase) (except at 1 μg/L) and POD (Peroxidase) (except at 0.2 μg/L), suggesting that the antioxidant systems in Coix lacryma-jobi were the main contributors of CAT and SOD (Superoxide Dismutase) and that the tolerance of C. lacryma-jobi to T1 is mainly due to this induced antioxidant machinery.
基金Supported by the National Natural Science Foundation of China(No.31101887)the Natural Science Foundation of Jiangsu Province(Nos.BK2011419,BK2012675)+1 种基金the Special Projects in Northern Jiangsu Province(No.BN2015107)the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection foundation(No.JLCBE07009)
文摘A feeding trial was carried out to investigate the dietary vitamin E requirement of the oriental river prawn Macrobrachium nipponense(weight of 0.3–0.4 g) and its effect role on antioxidant activity.Prawns were fed with seven levels of vitamin E(0,25,50,75,100,200,and 400 mg/kg diet) for 60 days.The results show that dietary vitamin E supplementation could significantly increased the prawn weight( P <0.05).The activity of superoxide dismutase(SOD) in the hepatopancreas was significantly higher in prawns fed with diets supplemented with ≤75 mg/kg vitamin E than in those fed with diets supplemented with 100–400 mg/kg vitamin E( P <0.05).The activity of catalase(CAT) in the hepatopancreas decreased significantly as dietary vitamin E supplementation increased( P <0.05),and no significant difference was detected in glutathione peroxidase(GSH-Px) activity between different dietary groups( P >0.05).The contents of vitamin E in the hepatopancreas and in the muscle increased with increasing dietary vitamin E.There was a linear correlation between the vitamin E level in diet and that in muscle,and between the vitamin E level in diet and that in the hepatopancreas.All the above results indicated that dietary vitamin E can be stored in the hepatopancreas and muscle and lower both the activities of SOD and CAT in the hepatopancreas,suggesting that it is a potential antioxidant in M.nipponense.Broken line analysis conducted on the weight gains of prawns in each diet group showed that the dietary vitamin E requirement for maximum growth is 94.10 mg/kg.
基金supported by the National Natural Science Foundation of China (Nos. 21071133, 51273184 and 81202399)the Program for Science and Technology of Shandong Province (2011GHY11521)the Natural Science Foundation of Qingdao City (Nos. 11-2-4-1-(9) gch), 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Uniconazole, as a plant growth retardant, can enhance stress tolerance in plants, possibly because of improved antioxidation defense mechanisms with higher activities of superoxide dismutase(SOD) and peroxidase(POD) enzymes that retard lipid peroxidation and membrane deterioration. These years much attention has been focused on the responses of antioxidant system in plants to uniconazole stress, but such studies on aquatic organism are very few. Moreover, no information is available on growth and antioxidant response in marine microalgae to uniconazole. In this paper, the growth and antioxidant responses of two marine microalgal species, Platymonas helgolandica and Pavlova viridis, at six uniconazole concentrations(0-15 mg L-1) were investigated. The results demonstrated that 3 mg L-1 uniconazole could increase significantly chlorophyll a and carbohydrate contents of P. helgolandica(P < 0.05). Higher concentrations(≥12 mg L-1) of uniconazole could inhibit significantly the growth, dry weight, chlorophyll-a and carbohydrate contents of P. helgolandica and P. viridis(P < 0.05). Uniconazole caused a significant increase in lipid peroxidation production(MDA) at higher concentrations(≥ 9 mg L-1). The activities of antioxidant enzymes, superoxide dismutase(SOD) and catalase(CAT) were enhanced remarkably at low concentrations of uniconazole. However, significant reduction of SOD and CAT activities was observed at higher concentrations of uniconazole.
文摘The present investigation was carried out to investigate the effect of heat stress and revival on some antioxidative enzymes and metabolites in leaves of the wheat (Triticum aestivum L.) seedlings of heat susceptible (cv. WH 147 and HS 277) and heat tolerant (cv. WH 1021 and HW 2045) cultivars. Seven days old seedlings grown at 25 ℃ were exposed to 40 ℃ for 6 h and these seedlings were again brought to 25 ℃. The observations were recorded in the leaves of control, stressed and revived seedlings on 2nd and 4th day of revival. For the selection ofthermo-tolerant cultivars, screening of the thirty-six cultivars was done based on wilting of primary leaf and values of chlorophyll fluorescence. The MDA (malondialdehyde) and H2O2 concentration in leaves of wheat seedlings increased at the high temperature. There was enhancement in the activities of antioxidative enzymes, viz. CAT (catalase), POX (peroxidase), GR (glutathione reductase) and APX (ascorbate peroxidase) in leaves of the tolerant and susceptible cultivars under heat stress, however, higher percent increase was observed in tolerant cultivars. Heat stress increased the SOD (superoxide dismutase) activity in tolerant cultivars but activity declined in susceptible cultivars. On revival, the activities of the CAT, POX and GR declined in comparison to stressed seedlings but remained higher as compared to control. Ascorbate peroxidase activity remained higher on 2nd day and 4th day of revival in all the cultivars.
基金Supported by the National Natural Science Foundation of China(No.30270235)
文摘The antioxidant enzyme activity and malondialdehyde(MDA) content of Cephalothrix hongkongiensis were studied to assess variations in the biochemical/physiological parameters of nemerteans under heavy metal stress.Worms were exposed to copper,zinc and cadmium solutions at different concentrations,and the activity of three antioxidant enzymes,catalase(CAT),superoxide dismutase(SOD),and glutathione peroxidase(GPX),and MDA content were measured.The results show that the activity of each enzyme changed immediately after exposure to heavy metals.CAT was invariably inhibited throughout the experimental period,while the SOD activity was significantly elevated by exposure to Cu^(2+) for 48h,but then decreased.SOD was inhibited by Zn^(2+) during the first 12h of exposure,but activated when exposed for longer periods.Under Cd^(2+) stress,SOD activity decreased within 72h.GPX activity varied greatly,being significantly increased by both Cu^(2+) and Zn^(2+),but significantly inhibited by Cd^(2+) in the first 12-24h after exposure.MDA content increased on Cu^(2+) exposure,but normally decreased on Zn^(2+) exposure.MDA content followed an increase-decrease-increase pattern under Cd^(2+) stress.In conclusion,the antioxidant system of this nemertean is sensitive to heavy metals,and its CAT activity may be a potential biomarker for monitoring heavy metal levels in the environment.
文摘Abstract [Objective] This study was conducted to evaluate the ecotoxicity of boscalid to adult zebrafish (Danio rerio). [Method] The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione peroxidase (GPx), as well as a non-enzymatic antioxidant malondialdehyde (MDA), in the liver were measured 3, 7, 14 and 21 d post exposure (dpe) to 0.02 (1/100 of acute toxicity), 0.036 (monitored concentration), 0.08 (1/20 of acute toxicity), 0.16 (1/10 of acute toxicity) and 0.32 mg/L (1/5 of acute toxicity) boscalid using a semi-static method. [Result] SOD, CAT, POD, GPx and MDA activity in the liver of zebrafish varied with boscalid concentration and exposure time. Boscalid significantly enhanced MDA content at 21 dpe. A significant upregulation of the activity of SOD, CAT, POD and GPx at 7 dpe was observed, suggesting that boscalid resulted in oxidative stress and lipid peroxidation. [Conclusion] These results show that these biomarkers are all appropriate for monitoring oxidative stress and the lipid peroxidation status of fish after exposure to boscalid. Key words Boscalid; Zebrafish; Antioxidant enzyme
基金Supported by the National High Technology Research and Development Program (863 Program) of China (No. 2007AA091701)the National Natural Science Foundation of China (No. 30870138)
文摘Arbuscular mycorrhizal (AM)-mediated plant physiological activities could contribute to plant salt tolerance. However, the biochemical mechanism by which AM fungi enhance salt tolerance of halophytie plants is unclear. A pot experiment was conducted to determine whether salt tolerance of the C3 halophyte Suaeda salsa was enhanced by the AM fungus Glomus rnosseae. When 60-day-old S. salsa seedlings were subjected to 400 mmol L-1 NaC1 stress for 35 days, plant height, number of leaves and branches, shoot and root biomass, and root length of G. mosseae-colonized seedlings were significantly greater than those of the nonmycorrizal seedlings. Leaf superoxide dismutase (SOD) activity at all sampling times (weekly for 35 days after salt stress was initiated) and leaf catalase (CAT) activity at 2 and 3 weeks after salt stress was initiated were also significantly enhanced in G. mosseae-colonized S. salsa seedlings, while the content of leaf malondialdehyde (MDA), a product of membrane lipid peroxidation, was significantly reduced, indicating an alleviation of oxidative damage. The corresponding leaf isoenzymes of SOD (Fe-SOD, Cu/Zn-SOD1, and Cu/Zn-SOD2) and CAT (CAT1 and CAT2) were also significantly increased in the mycorrhizal seedlings after 14 days of 400 mmol L-1 NaC1 stress. Our results suggested that G. rnosseae increased salt tolerance by increasing SOD and CAT activities and forming SOD and CAT isoforms in S. salsa seedlings.