期刊文献+
共找到1,190篇文章
< 1 2 60 >
每页显示 20 50 100
Green synthesis of ZSM-5 using silica fume and catalytic co-cracking of lignin and plastics for production of monocyclic aromatics
1
作者 Hongbing Fu Yufei Gu +7 位作者 Tianhua Gao Fuwei Li Hengshuo Gu Hucheng Ge Yuke Liu Zhixia Li Hongfei Lin Jiangfei Cao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期92-105,共14页
ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles w... ZSM-5 with hierarchical pore structure was synthesized by a simple two-step hydrothermal crystallization from silica fume without using any organic ammonium templates.The synthesized ZSM-5 were oval shaped particles with a particle size about 2.0 μm and weak acid-dominated with proper Brønsted(B)and Lewis(L)acid sites.The ZSM-5 was used for catalytic co-cracking of n-octane and guaiacol,lowdensity polyethylene(LDPE)and alkali lignin(AL)to enhance the production of benzene,toluene,ethylbenzene and xylene(BTEX).The most significant synergistic effect occurred at n-octane/guaiacol at 1:1 and LDPE/AL at 1:3,under the condition,the achieved BTEX selectivity were 24%and 33%(mass)higher than the calculated values(weighted average).The highest BTEX selectivity reached 88.5%,which was 3.7%and 54.2%higher than those from individual cracking LDPE and AL.The synthesized ZSM-5 exhibited superior catalytic performance compared to the commercial ZSM-5,indicating potential application prospect. 展开更多
关键词 Silica fume ZSM-5 catalytic co-cracking PLASTICS LIGNIN
下载PDF
Critical approaches in the catalytic transformation of sugar isomerization and epimerization after Fischer-History,challenges,and prospects
2
作者 Da-Ming Gao Xun Zhang +5 位作者 Haichao Liu Hidemi Fujino Tingzhou Lei Fuan Sun Jie Zhu Taoli Huhe 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期435-453,共19页
The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and... The transformation of aldose to ketose or common sugars into rare saccharides,including rare ketoses and aldoses,is of great value and interest to the food industry and for saccharidic biomass utilization,medicine,and the synthesis of drugs.Nowadays,high-fructose corn syrup(HFCS)is industrially produced in more than 10 million tons annually using immobilized glucose isomerase.Some low-calorie saccharides such as tagatose and psicose,which are becoming popular sweeteners,have also been produced on a pilot scale in order to replace sucrose and HFCS.However,current catalysts and catalytic processes are still difficult to utilize in biomass conversion and also have strong substrate dependence in producing high-value,rare sugars.Considering the specific reaction properties of saccharides and catalysts,since the pioneering discovery by Fischer,various catalysts and catalytic systems have been discovered or developed in attempts to extend the reaction pathways,improve the reaction efficiency,and to potentially produce commercial products.In this review,we trace the history of sugar isomerization/epimerization reactions and summarize the important breakthroughs for each reaction as well as the difficulties that remain unresolved to date. 展开更多
关键词 Rare sugars ISOMERIZATION Ketonization EPIMERIZATION catalytic transformation
下载PDF
HZSM-5 zeolites undergoing the high-temperature process for boosting the bimolecular reaction in n-heptane catalytic cracking
3
作者 Chenggong Song Zhenzhou Ma +6 位作者 Xu Hou Hao Zhou Huimin Qiao Changchang Tian Li Yin Baitang Jin Enxian Yuan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期136-144,共9页
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,... High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking. 展开更多
关键词 HZSM-5 N-HEPTANE catalytic cracking High-temperature treatment Extra-framework Al
下载PDF
Catalytic effect in lithium metal batteries: From heterogeneous catalyst to homogenous catalyst
4
作者 Haining Fan Xuan-Wen Gao +3 位作者 Hailong Xu Yichun Ding Shi-Xue Dou Wen-Bin Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期305-326,I0008,共23页
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec... Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy. 展开更多
关键词 Energy storage and conversion Metal battery Sulfur battery Air battery catalytic effect Heterogeneous catalyst Homogeneous catalyst
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction
5
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Preparation of Modified UiO-66 Catalyst and Its Catalytic Performance for NH_(3)-SCR Denitration
6
作者 吴彦霞 梁海龙 +2 位作者 CHEN Yufeng HU Liming WANG Chunpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期261-267,共7页
Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactiv... Zirconium-based metal-organic framework UiO-66 was successfully prepared by solvothermal method,and UiO-66 was modified by adding regulators such as formic acid,acetic acid,and hydrochloric acid.The NH_(3)-SCR reactivity of the samples was evaluated by the denitration activity evaluation system,and the UiO-66 and the regulator-modified UiO-66 were characterized by XRD,SEM,BET,FTIR,TG,NH_(3)-TPD,etc.,the effects of regulator types on the structure and properties of UiO-66 were investigated.The experimental results show that,after adding the modifier,the morphology of UiO-66 changes from irregular quadrilateral with serious agglomeration to particles with regular crystal shape and good dispersibility,and the crystal morphology of the catalyst is improved.In addition,after adding the modifier,UiO-66 has a larger specific surface area and stronger surface acidity,which optimizes the catalytic performance of UiO-66.The catalytic performance test results of NH_(3)-SCR show that the low-temperature activity of UiO-66 is poor,and it only shows a certain catalytic activity at higher temperatures.The catalytic activity of UiO-66 was significantly improved after adding the regulator.Among them,the UiO-66-HCl modified with hydrochloric acid had the best catalytic activity,and the denitration rate reached 70%when the denitration temperature was 380℃. 展开更多
关键词 UiO-66 catalyst catalytic denitration NH_(3)-SCR MODIFIED
原文传递
Preparation of PrFe_(x)Co_(1-x)O_(3)/Mt catalyst and study on degradation of 2-hydroxybenzoic acid wastewater by catalytic wet peroxide oxidation
7
作者 Binxia Zhao Yijia Gao +3 位作者 Tiancheng Hun Xiaoxiao Fan Nan Shao Xiaoqian Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期286-297,共12页
In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnat... In this study,the perovskite nanocomposite PrFe_(x)Co_(1-x)O_(3)(Pr(S))was successfully synthesized by the sol-gel method;PrFe_(x)Co_(1-x)O_(3)/Al-pillared montmorillonite(Pr(S)/Mt)catalysts were prepared by impregnation(D)method and solid-melting(G)method,respectively,with Pr(S)as the active component and Al-pillared montmorillonite as the carrier.The catalysts were applied to treat the 2-hydroxybenzoic acid(2-HA)-simulated wastewater by catalytic wet peroxide oxidation(CWPO)technique,and the chemical oxygen demand(COD)removal rate and the 2-HA degradation rate were used as indicators to evaluate the catalytic performance.The results of the experiment indicated that the solid-melting method was more conducive to preparing the catalyst when the Co/Fe molar ratio of 7:3 and the optimal structural properties of the catalysts were achieved.The influence of operating parameters,including reaction temperature,catalyst dosage,H_(2)O_(2)dosage,pH,and initial 2-HA concentration,were optimized for the degradation of 2-HA by CWPO.The results showed that 97.64%of 2-HA degradation and 75.23%of COD removal rate were achieved under more suitable experimental conditions.In addition,after the catalyst was used five times,the degradation rate of 2-HA could still reach 76.93%,which implied the high stability and reusability of the catalyst.The high catalytic activity of the catalyst was due to the doping of Co into PrFeO_(3),which could promote the generation of HO·,and the high stability could be attributed to the loading of Pr(S)onto Al-Mt,which reduced the leaching of reactive metals.The study of reaction mechanism and kinetics showed that the whole degradation process conformed to the pseudo-firstorder kinetic equation,and the Langmuir-Hinshelwood method was applied to demonstrate that catalysis was dominant in the degradation process. 展开更多
关键词 MONTMORILLONITE PEROVSKITE catalytic wet peroxide oxidation(CWPO) 2-Hydroxybenzoic acid
下载PDF
Catalytic Effect of Transition Metal Complexes of Triaminoguanidine on the Thermolysis of Energetic NC/DEGDN Composite
8
作者 Mohammed Dourari Ahmed Fouzi Tarchoun +4 位作者 Djalal Trache Amir Abdelaziz Roufaida Tiliouine Tessnim Barkat Weiqiang Pang 《火炸药学报》 EI CAS CSCD 北大核心 2024年第3期209-219,I0003,共12页
The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and ... The transition metal complexes of triaminoguanidine(TAG-M,where M=Cobalt(Co)or Iron(Fe))have been prepared.The catalytic effect of these complexes on the thermolysis of energetic composite based on nitrocellulose and diethylene glycol dinitrate,has been investigated.Extensive characterization of the resulting energetic composites was carried out using scanning electron microscopy(SEM),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),and differential scanning calorimetry(DSC).Isoconversional kinetic analysis was performed to determine the Arrhenius parameters associated with the thermolysis of the elaborated energetic formulations.It is found that TAG-M complexes have strong catalytic effect on the thermo-kinetic decomposition of NC/DEGDN by decreasing the apparent activation energy and significantly increased the total heat release.The models that govern the decomposition processes are also studied,and it is revealed that different reaction processes are accomplished by introduction metal complexes of triaminoguanidine.Overall,this study serves as a valuable reference for future research focused on the investigation of catalytic combustion features of solid propellants. 展开更多
关键词 triaminoguanidine transition metal complexes NITROCELLULOSE diethylene glycol dinitrate catalytic effect
下载PDF
Target-induced Trivalent G-quadruplex/hemin DNAzyme for Colorimetric Detection of Hg^(2+) Based on an Exonuclease III Assisted Catalytic Hairpin Assembly
9
作者 Zhenghua LIU Zhonghai LI 《Agricultural Biotechnology》 2024年第1期51-57,共7页
Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly fo... Mercury ion(Hg^(2+)),a highly noxious of heavy metalion,has detrimental effects on the ecological environment and human health.Herein,we have developed an exonuclease III(Exo III)assisted catalytic hairpin assembly formation of a trivalent G-quadruplex/hemin DNAzyme for colorimetric detection of Hg^(2+).A hairpin DNA(Hr)was designed with thymine-Hg^(2+)-thymine pairs that catalyzed by Exo III is prompted to happen upon binding Hg^(2+).A released DNA fragment triggers the catalytic assembly of other three hairpins(H1,H2,and H3)to form many trivalent G-quadruplex/hemin DNA enzymes for signal output.The developed sensor shows a dynamic range from 2 pM to 2μM,with an impressively low detection limit of 0.32 pM for Hg^(2+)detection.Such a sensor also has good selectivity toward Hg^(2+)detection in the presence of other common metal ions.This strategy shows the great potential for visual detection with portable type. 展开更多
关键词 G-quadruplex/hemin DNAzyme Multivalence catalytic hairpin assembly Exonuclease III Signal amplification Colorimetric detection
下载PDF
Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures
10
作者 Zhiwei Wang Yu Zhang +3 位作者 Zhi Zhang Daowei Zhou Zhikai Cao Yong Sha 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期63-72,共10页
The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catal... The catalytic packing is the core component of the catalytic distillation,and how the catalyst exists in the packing has significant influence on the process.To investigate the effect of catalyst packings on the catalytic distillation process,the classical ethyl acetate reactive distillation system was utilized,and a supported catalytic packing(SCP)was prepared in comparison with the conventional tea-bag catalytic packing(TBP).Laboratory scale experiments showed that the ethyl acetate conversion of the SCP was superior to the TBP at a low catalyst loading.The effects of reaction kinetics,mass transfer performance and actual catalytic efficiency of the packings on this process were regarded as reasons and studied by combining the experiments and numerical simulation.Results suggested that the relatively immediate“in-situ separation”caused by the rapid reaction kinetics and better mass transfer performance of SCP may be a main reason for the difference of the conversion. 展开更多
关键词 catalytic packing Ethyl acetate catalytic distillation Mass transfer ESTERIFICATION Reaction kinetics
下载PDF
Photothermal Catalytic Selective Oxidation of Isobutane to Methacrylic Acid over Keggin-Type Heteropolyacid
11
作者 Yichuan Wang Xiao Sun +2 位作者 Zeyue Wei Xuanyu Zhang Weixin Huang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期497-502,I0001,共7页
Thermal and photothermal catalytic selec-tive oxidation of isobutane to methacrylic acid(MAA)are comparatively studied over a keggin-type Cs2.9Cu0.34V0.49PMo12O40 het-eropolyacid acid.An introduction of light was obse... Thermal and photothermal catalytic selec-tive oxidation of isobutane to methacrylic acid(MAA)are comparatively studied over a keggin-type Cs2.9Cu0.34V0.49PMo12O40 het-eropolyacid acid.An introduction of light was observed to enhance both the i-C4H10 conversion and the MAA selectivity,and consequently the MAA formate rate,particularly at low temperatures.Characterization re-sults show that oxidation of methacrolein(MAL)to MAA is the rate-limiting step while UV light illumination promotes the oxidation ofσ-bonded MAL with OH groups toσ-bonded MAA on the catalyst surface.These results demonstrate a synergistic effect of thermal cataly-sis and photocatalysis in selective oxidation of isobutane to MAA,which suggests photother-mal catalysis as a promising strategy to catalyze the selective oxidation of higher hydrocar-bons at relative mild reaction conditions. 展开更多
关键词 Photothermal catalytic reaction Thermal catalytic reaction Selection oxida-tion Reaction mechanism In situ characterization
下载PDF
Catalytic conversion of lignocellulosic biomass into chemicals and fuels 被引量:6
12
作者 Weiping Deng Yunchao Feng +21 位作者 Jie Fu Haiwei Guo Yong Guo Buxing Han Zhicheng Jiang Lingzhao Kong Changzhi Li Haichao Liu Phuc T.T.Nguyen Puning Ren Feng Wang Shuai Wang Yanqin Wang Ye Wang Sie Shing Wong Kai Yan Ning Yan Xiaofei Yang Yuanbao Zhang Zhanrong Zhang Xianhai Zeng Hui Zhou 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期10-114,共105页
In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a pro... In the search of alternative resources to make commodity chemicals and transportation fuels for a low carbon future,lignocellulosic biomass with over 180-billion-ton annual production rate has been identified as a promising feedstock.This review focuses on the state-of-the-art catalytic transformation of lignocellulosic biomass into value-added chemicals and fuels.Following a brief introduction on the structure,major resources and pretreatment methods of lignocellulosic biomass,the catalytic conversion of three main components,i.e.,cellulose,hemicellulose and lignin,into various compounds are comprehensively discussed.Either in separate steps or in one-pot,cellulose and hemicellulose are hydrolyzed into sugars and upgraded into oxygen-containing chemicals such as 5-HMF,furfural,polyols,and organic acids,or even nitrogen-containing chemicals such as amino acids.On the other hand,lignin is first depolymerized into phenols,catechols,guaiacols,aldehydes and ketones,and then further transformed into hydrocarbon fuels,bioplastic precursors and bioactive compounds.The review then introduces the transformations of whole biomass via catalytic gasification,catalytic pyrolysis,as well as emerging strategies.Finally,opportunities,challenges and prospective of woody biomass valorization are highlighted. 展开更多
关键词 Lignocelullose BIOMASS catalytic conversion Biofuels Renewable chemicals
下载PDF
Emerging catalytic materials for practical lithium-sulfur batteries 被引量:2
13
作者 Fangyi Shi Lingling Zhai +4 位作者 Qingqing Liu Jingya Yu Shu Ping Lau Bao Yu Xia Zheng-Long Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期127-145,I0004,共20页
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit... High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs. 展开更多
关键词 Lithium-sulfur battery catalytic materials High sulfur loading Lean electrolyte
下载PDF
Cerium-tungsten oxides supported on activated red mud for the selective catalytic reduction of NO_(x) 被引量:1
14
作者 Qiuzhun Chen Dong Wang +7 位作者 Chuan Gao Bin Wang Shengli Niu Gaiju Zhao Yue Peng Junhua Li Chunmei Lu John Crittenden 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期173-182,共10页
Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybde... Activated red mud(RM)has been proved to be a promising base material for the selective catalysis reduction(SCR)of NOx.The inherent low reducibility and acidity limited its low-temperature activity.In this work,molybdenum oxide,tungsten oxide,and cerium oxide were used to reconfigure the redox sites and acid sites of red mud based catalyst.When activated red mud was reconfigured by cerium-tungsten oxide(Ce-W@RM),the NOx conversion kept above 90%at 219-480℃.The existence of Ce^(3+)/Ce^(4+) redox electron pairs provided more surface adsorbed oxygen(O_(α)) and served as a redox cycle.Positive interactions between Ce,W species and Fe oxide in red mud occurred,which led to the formation of unsaturated chemical bond and promoted the activation of adsorbed NH_(3) species.WO_(3) and Ce_(2)(WO_(4))_(3)(formed by solid-state reaction between Ce and W species)could provide more Brønsted acid sites(W-O modes of WO_(3),W=O or W-O-W modes of Ce_(2)(WO_(4))_(3)).CeO_(2) species could provide more Lewis acid sites.The Langmuir-Hinshelwood(L-H)routes and Eley-Rideal(E-R)routes occurred in the low-temperature SCR reaction on the Ce-W@RM surface.NH_(4)^(+) species on Brønsted acid sites,NH_(3) species on Lewis acid sites,bidentate nitrate and bridging nitrate species were key active intermediates species. 展开更多
关键词 Air pollution control NOx Selective catalytic reduction CERIUM TUNGSTEN
下载PDF
Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation 被引量:1
15
作者 Yuxi Chai Yanan Zhang +6 位作者 Yannan Tan Zhiwei Li Huangzhao Wei Chenglin Sun Haibo Jin Zhao Mu Lei Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期80-88,共9页
There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in cata... There have been many studies on life cycle assessment in sewage treatment,but there are scarce few studies on the treatment of industrial wastewater in combination with advanced oxidation technology,especially in catalytic wet air oxidation(CWAO).There are no cases of using actual industrialized data onto life cycle assessment.This paper uses Simapro 9.0 software to establish a life cycle assessment model for the treatment of high-concentration organic wastewater by CWAO,and comprehensively explains the impact on the environment from three aspects:the construction phase,the operation phase and the demolition phase.In addition,sensitivity analysis and uncertainty analysis were performed.The results showed that the key factors affecting the environment were marine ecotoxicity,mineral resource consumption and global warming,the operation stage had the greatest impact on the environment,which was related to high power consumption during operation and emissions from the treatment process.Sensitivity analysis showed that electricity consumption has the greatest impact on abiotic depletion and freshwater aquatic ecotoxicity,and it also proved that global warming is mainly caused by pollutant emissions during operation phase.Monte Carlo simulations found slightly higher uncertainty for abiotic depletion and toxicity-related impact categories. 展开更多
关键词 Wastewater treatment High-concentration organic wastewater catalytic wet air oxidation Life-cycle assessment
下载PDF
Isolated diatomic Zn-Co metal–nitrogen/oxygen sites with synergistic effect on fast catalytic kinetics of sulfur species in Li-S battery 被引量:1
16
作者 Chun-Lei Song Qiao-Tong He +7 位作者 Zhongyi Zeng Jing-Yan Chen Tian Wen Yu-Xiao Huang Liu-Chun Zhuang Wei Yi Yue-Peng Cai Xu-Jia Hong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期505-514,共10页
Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield ... Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield strategy for synthesizing dual-core single-atom catalyst(ZnCoN_(4)O_(2)/CN)with atomically dispersed nitrogen/oxygen-coordinated Zn-Co sites on carbon nanosheets.Based on density functional theory(DFT)calculations and LiPSs conversion catalytic ability,ZnCoN_(4)O_(2)/CN provides dual-atom sites of Zn and Co,which could facilitate Li^(+)transport and Li_(2)S diffusion,and catalyze LiPSs conversion more effectively than homonuclear bimetallic single-atom catalysts or their simple mixture and previously reported singleatom catalysts.Li-S cell with ZnCoN_(4)O_(2)/CN modified separator showed excellent rate performance(789.4 mA h g^(-1)at 5 C)and stable long cycle performance(0.05%capacity decay rate at 6C with 1000cycles,outperforming currently reported single atomic catalysts for LiPSs conversion.This work highlights the important role of metal active centers and provides a strategy for producing multifunctional dual-core single atom catalysts for high-performance Li-S cells. 展开更多
关键词 Dual-core single-atom catalysts Lithium polysulfides Fast catalytic kinetics Li_(2)S diffusion Li-S battery
下载PDF
Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH_(2) 被引量:1
17
作者 Liuting Zhang Farai Michael Nyahuma +4 位作者 Haoyu Zhang Changshan Cheng Jiaguang Zheng Fuying Wu Lixin Chen 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期589-600,共12页
Nb_(2)O_(5)nanoparticles with an average particle size of 10 nm supported on a rhombic dodecahedral metal organic framework(MOF)were successfully synthesized by a facile one-pot hydrothermal reaction and subsequent ca... Nb_(2)O_(5)nanoparticles with an average particle size of 10 nm supported on a rhombic dodecahedral metal organic framework(MOF)were successfully synthesized by a facile one-pot hydrothermal reaction and subsequent calcination process.Experimental results demonstrated that the prepared catalyst drastically improved the hydrogen storage behavior of MgH_(2).7 wt%Nb_(2)O_(5)@MOF doped MgH_(2)started to desorb hydrogen at 181.9℃and 6.2 wt%hydrogen could be released within 2.6 min and 6.3 min at 275℃and 250℃,respectively.The fully dehydrogenated composite also displayed excellent hydrogenation by decreasing the onset absorption temperature to 25℃and taking up4.9 wt%and 6.5 wt%hydrogen within 6 min at 1750C and 1500C,respectively.Moreover,the corresponding activation energy was calculated to be 75.57±4.16 kJ mol^(-1)for desorption reaction and 51.38±1.09 kJ mol^(-1)for absorption reaction.After 20 cycles,0.5 wt%hydrogen capacity was lost for the MgH_(2)+7 wt%Nb_(2)O_(5)@MOF composite,much lower than 1.5 wt%of the MgH_(2)+7 wt%Nb_(2)O_(5)composite.However,the addition of Nb_(2)O_(5)@MOF had limited effect on reducing the dehydrogenation enthalpy of MgH_(2).Microstructure analysis revealed that Nb_(2)O_(5)particles were uniformly distributed on surface of the MgH_(2)matrix and synergistically improved the hydrogen storage property of MgH_(2)with MOF. 展开更多
关键词 Hydrogen storage MgH_(2) Nb_(2)O_(5)@MOF REVERSIBILITY catalytic mechanism
下载PDF
Catalyst for Increasing Ethylene and Propylene Production and Its Industrial Application in a Catalytic Pyrolysis Unit 被引量:1
18
作者 Sha Yuchen Wang Peng +5 位作者 Ouyang Ying Zhu Genquan Lu Lijun Song Haitao Lin Wei Luo Yibin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第2期1-9,共9页
Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the c... Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run. 展开更多
关键词 catalytic pyrolysis process light olefins CATALYST
下载PDF
Advanced semiconductor catalyst designs for the photocatalytic reduction of CO_(2) 被引量:1
19
作者 Zhangsen Chen Gaixia Zhang +3 位作者 Siyi Cao Guozhu Chen Cuncheng Li Ricardo IzquierdoShuhui Sun 《Materials Reports(Energy)》 2023年第2期27-42,I0002,共17页
Using clean solar energy to reduce CO_(2)into value-added products not only consumes the over-emitted CO_(2)that causes environmental problems,but also generates fuel chemicals to alleviate energy crises.The photocata... Using clean solar energy to reduce CO_(2)into value-added products not only consumes the over-emitted CO_(2)that causes environmental problems,but also generates fuel chemicals to alleviate energy crises.The photocatalytic CO_(2)reduction reaction(PCO_(2)RR)relies on the semiconductor photocatalysts that suffer from high recombination rate of the photo-generated carriers,low light harvesting capability,and low stability.This review explores the recent discoveries on the novel semiconductors for PCO_(2)RR,focusing on the rational catalyst design strategies(such as surface engineering,band engineering,hierarchical structure construction,single-atom catalysts,and biohybrid catalysts)that promote the catalytic performance of semiconductor catalysts on PCO_(2)RR.The advanced characterization techniques that contribute to understanding the intrinsic properties of the photocatalysts are also discussed.Lastly,the perspectives on future challenges and possible solutions for PCO_(2)RR are presented. 展开更多
关键词 Photoreduction of CO_(2) Semiconductor catalysts Photocatalyst modification Heterojunction construction catalytic efficiency Activity Environmental and sustainable applications
下载PDF
Overview of Precious Metal Content Analysis Methods in Automotive Catalytic Converter 被引量:1
20
作者 Xianpeng Yang Chengbao Xie +4 位作者 Ning Liu Xin Du Suqing Wang Huasheng Jiang Zhengang Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第11期7-14,共8页
With the increasing awareness of environmental protection, people’s concern of pollution issues arising. Vehicles, as the most important means of transportation, its exhaust emission has received considerable attenti... With the increasing awareness of environmental protection, people’s concern of pollution issues arising. Vehicles, as the most important means of transportation, its exhaust emission has received considerable attention. The catalytic converter is able to purify harmful substances in exhaust gas. The absolute content of precious metals in the catalytic converter dominates the exhaust gas purification effect. Accurate detection of precious metal content is of great significance for controlling the cost of catalysts, ensuring catalytic performance and recovering precious metals from spent catalysts. We herein summarized several instruments for precious metals content exploration, such as X-ray fluorescence spectrometer (XRF), atomic absorption spectrometer (AAS), inductively coupled plasma emission spectrometer (ICP) and spectrophotometer. In this thesis, the feasibility of using various devices for characterizing precious metal content in catalytic converters is analyzed and their strengths or weaknesses are elaborated. 展开更多
关键词 catalytic Converter Precious Metal Content Analysis Methods
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部