在个人信用评估领域,对个人信用等级的预测是最具有挑战性的。提高对个人信用等级预测的准确度可以避免大量死账坏账的出现。然而传统的个人信用评估模型假设全部属性都具有相同的重要性,并且使用单一测度进行规则的剪枝和预测,这些个...在个人信用评估领域,对个人信用等级的预测是最具有挑战性的。提高对个人信用等级预测的准确度可以避免大量死账坏账的出现。然而传统的个人信用评估模型假设全部属性都具有相同的重要性,并且使用单一测度进行规则的剪枝和预测,这些个人信用评估模型往往太主观,不能取得较好的分类效果。该研究结合测度整合和(Adaptive Weighted Classification Base of Association,AWCBA)算法构建了个人信用评估模型,对客户基础属性进行自适应化加权,并引用了支持度、置信度和卡方测度的调和均值作为分类依据,实现个人信用等级的分类,与其他算法相比,AWCBA算法预测准确度比其他算法都要高。展开更多
文摘在个人信用评估领域,对个人信用等级的预测是最具有挑战性的。提高对个人信用等级预测的准确度可以避免大量死账坏账的出现。然而传统的个人信用评估模型假设全部属性都具有相同的重要性,并且使用单一测度进行规则的剪枝和预测,这些个人信用评估模型往往太主观,不能取得较好的分类效果。该研究结合测度整合和(Adaptive Weighted Classification Base of Association,AWCBA)算法构建了个人信用评估模型,对客户基础属性进行自适应化加权,并引用了支持度、置信度和卡方测度的调和均值作为分类依据,实现个人信用等级的分类,与其他算法相比,AWCBA算法预测准确度比其他算法都要高。