期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Study on Fly Ash Based Porous Ceramsite as Biological Filter Media
1
作者 Ruigang WANG Shuo WANG +1 位作者 Weijie LI Hailong LIU 《Agricultural Biotechnology》 2024年第1期71-73,共3页
Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials... Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%. 展开更多
关键词 Porous ceramsite Domestic sewage Fly ash
下载PDF
Effects of Different Calcining Temperatures on the Properties of Ceramsite Prepared by High-carbon Gasification Slag
2
作者 WU Feng LI Hui +1 位作者 LI Taizhi MA Xudong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期292-298,共7页
The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential ... The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates. 展开更多
关键词 high-carbon gasification slag ceramsite CONCRETE physical property
原文传递
Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand
3
作者 Suiwei Pan Anqi Ren +4 位作者 Yongli Peng Min Wu Wanguo Dong Chunlin Liu Depeng Chen 《Journal of Renewable Materials》 SCIE EI 2023年第2期881-904,共24页
This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the en... This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage). 展开更多
关键词 Steel slag ceramsite self-compacting concrete WORKABILITY compressive strength
下载PDF
Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites:Adsorption Kinetics and Mechanism Analysis
4
作者 Haodong Li Huiling Du +5 位作者 Le Kang Yewen Zhang Tong Lu Yuchan Zhang Lan Yang Shijie Song 《Journal of Renewable Materials》 EI 2023年第12期4161-4174,共14页
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s... The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment. 展开更多
关键词 Porous ceramsites ADSORPTION biological carbon kinetic analysis adsorption mechanism
下载PDF
Preparation of Lightweight Alumina-silica Castables by Replacing Closed-cell Perlite Aggregates with Coal Gangue Ceramsites
5
作者 ZAN Wenyu MA Beiyue 《China's Refractories》 CAS 2023年第3期20-25,共6页
Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica... Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%. 展开更多
关键词 alumina-silica castables closed-cell perlite coal gangue ceramsites comprehensive performance
下载PDF
Preparation and Physical Properties of Ceramsite Filter Media for Water Treatment Obtained from Municipal Solid Wastes 被引量:5
6
作者 李天鹏 孙婷婷 +3 位作者 TALLAL Binaftab 李登新 林晓亮 李玉龙 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期38-43,共6页
Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge b... Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996). 展开更多
关键词 ceramsite filter material raw materials formula sintering process physical property
下载PDF
Effect of Thermal Regeneration on the Breakthrough Performance of Ceramsite Saturated with Methylene Blue 被引量:2
7
作者 Tianpeng Li Ting Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第5期87-96,共10页
The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle... The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle on the breakthrough performance of methylene blue(MB)dye⁃exhausted ceramsite in a two⁃stage fixed⁃bed column were studied in this work.Results illustrate that the ceramsite exhibited excellent potential regeneration properties under the following optimal regeneration conditions:treatment temperature was 600°C,resistant time was 15 min,heating rate was 20℃/min,regeneration cycle was over 9 cycles,and the breakthrough time,saturation time,regeneration efficiency(RE),and regeneration loss rate(RLR)were 540 min,1020 min,64.61%,and 17.73%,respectively.The RE declined by 35.14%in over 1 cycle,while the RLR increased by 3.15 times in over 9 cycles.Besides,Thomas model was suitable to describe the two⁃stage fixed⁃bed column adsorption and thermal regeneration process with R2=0.978.In conclusion,a thorough understanding of the regeneration behavior of the two⁃stage fixed⁃bed column packed with ceramsite provides reference to obtain an effective and feasible regeneration approach,and it is beneficial for further application in water treatment. 展开更多
关键词 ceramsite thermal regeneration two⁃stage fixed⁃bed column breakthrough performance Thomas model
下载PDF
Versatile Surface Modification of Ceramsite Via Honeycomb Calcium-aluminum-silicate-hydrate and Its Functionalization by 3-thiocyanatopropyltriethoxysilane for Enhanced Cadmium(Ⅱ) Removal 被引量:1
8
作者 赵都 刘鹏 +2 位作者 WANG Fazhou HU Chuanlin HU Shuguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期71-80,共10页
A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciuma... A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciumaluminum-silicate-hydrate(C-A-S-H) layer as intermediate. The specific surface area of ceramsite was increased enormously by more than 50 times because of the modification of honeycomb layer. Moreover, the abundant Si-OH bonds existing in the structure of CAS-H can serve as active sites for TCPS. The combined effects ensure that the hybrid filter medium(named ceramsite/C-A-S-H/TCPS) demonstrated a high Cd(Ⅱ) adsorption capacity of 18.27 mg·g^-1 for particle size of 0.1-0.6 mm, 12.63 mg·g^-1 for 0.6-1.25 mm and 8.64 mg·g^-1 for 1.25-2.35 mm. The Cd(Ⅱ) adsorption capacity per unit area of ceramsite/C-A-S-H/TCPS(0.1-0.6 mm) is up to 4.07 mg·m^-2, which is much higher than that of many nano-adsorbents. In addition, ceramsite/C-AS-H/TCPS could maintain a high removal efficiency(> 85%) in a wide range of p H 3-11 and showed excellent selectivity in the presence of competing ions. Furthermore, Cd(Ⅱ) could be desorbed from ceramsite/C-A-S-H/TCPS composites with nearly 100%, suggesting the potential application in recycling of heavy metal ions. 展开更多
关键词 HONEYCOMB C-A-S-H 3-thiocyanatopropyltriethoxysilane ceramsite amorphous silica Cd(Ⅱ) REMOVAL
原文传递
Preparation and Properties of High-strength Ceramsite in Low Water Absorption
9
作者 邓宏卫 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期135-139,共5页
Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-... Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles. 展开更多
关键词 FLY ASH ceramsite SINTERING expansion ADDITIVE fluxing ADDITIVE
原文传递
Process and property optimization of ceramsite preparation by Bayan Obo tailings and blast furnace slag
10
作者 Yi-fan Chai Wen-xian Hu +3 位作者 Yun-hao Zhang Yi-ci Wang Jun Peng Sheng-li An 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1381-1389,共9页
The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite wer... The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite were optimized.The phase transformation rules of the ceramsite prepared by multi-source solid waste in sintering method were clarified.The influence of sintering process parameters on ceramsite performance and the purification effect of ceramsite on ammonia nitrogen wastewater were revealed.The results show that the reasonable proportion of raw materials for preparing ceramsite is 60%tailings,35%blast furnace slag and 5%coal gangue.The reasonable preparation process of ceramsite is preheating at 350℃ for 12 min,increasing the temperature to 750℃ and holding for 60 min,then increasing the temperature to 1130℃ and roasting for 20 min.The cooling method is to cool down with the furnace.The prepared ceramsite has compressive strength of 1.89 MPa,porosity of 51.31%,water absorption of 31.42%,and bulk density of 1.94 g/cm^(3).When the ceramsite is used to treat ammonia nitrogen wastewater,the removal rate of ammonia nitrogen is 47.33%. 展开更多
关键词 Bayan Obo tailing Blast furnace slag ceramsite Solid waste Comprehensive utilization
原文传递
Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas
11
作者 Yi Huang Xiang-jie Duan +1 位作者 Yu Li Wei Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1401-1410,共10页
Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and re... Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO_(2)^(*) (SO and/or SO_(2)) and NO_(x)^(*) (N_(2)O, NO, and/or NO_(2)) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 ℃, and the ignition loss was 14.60 mass% at 1000 ℃. Kaolinite and calcite disappeared at 600 and 800 ℃, respectively. Albite disappeared and mullite formed at 1000 ℃. Two peaks of SO_(2)^(*) emissions emerged in the range of 311–346 mg m^(-3) near 500 ℃ of upper layer ceramsite and 420–489 mg m^(-3) near 1000 ℃ of lower layer ceramsite, respectively. NO_(x)^(*) emissions peak emerged in the range of 227–258 mg m^(-3) near 550 ℃ of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 ℃ accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite. 展开更多
关键词 Gangue ceramsite COGENERATION SO_(2)^(*) NO_(x)^(*) Flue gas waste heat
原文传递
A novel approach to with a preparing ultra-lightweight ceramsite large amount of fly ash 被引量:2
12
作者 Sen Liu Congren Yang +2 位作者 Wei Liu Longsheng Yi Wenqing Qin 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2020年第4期77-87,共11页
The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years.The most common method of fly ash disposal is solidification-stabilization-landfill,and the most common... The disposal of fly ash has become a serious problem in China due to its rapid increase in volume in recent years.The most common method of fly ash disposal is solidification-stabilization-landfill,and the most common reuse is low-value-added building materials.A novel processing method for preparing ultra-lightweight ceramsite with fly ash was developed.The results show that the optimal parameters for preparation of ultra-lightweight ceramsite are as follows:mass ratio of fly ash:kaolin:diatomite=80:15:5,preheating temperature of 800℃,preheating time of 5 min,sintering temperatiire of 1220℃,and sintering time of 10 min.The expansion agent is perlite,at 10 wt.% addition.Finally,a ceramsite with bulk density of 340 kg/m3,particle density of 0.68 g/cm3,and cylinder compressive strength of 1.02 MPa was obtained.Because of its low density and high porosity,ultra-lightweight ceramsite has excellent thermal insulation performance,and its strength is generally low,so it is usually used in the production of thermal insulation concrete and its products.The formation of a liquid-phase component on the surface,and generation of a gas phase inside ceramsite during the sintering process,make it possible to control the production of the suitable liquid phase and gas in this system,resulting in an optimization of the expansion behavior and microstructure of ceramsite.These characteristics show the feasibility of industrial applications of fly ash for the production of ultralightweight ceramsite,which could not only produce economic benefits,but also conserve land resources and protect the environment. 展开更多
关键词 Fly ash Ultra-lightweight ceramsite Expansion mechanism Sintering process
原文传递
Influence of resin flow on shrinkage of additive manufacturing coated sand molds 被引量:1
13
作者 shu-ming zhao shan yao tong yang 《China Foundry》 SCIE 2018年第4期291-298,共8页
Coated sands are used extensively for additive manufacturing sand molds in the metal casting process, and the packing structure changes caused by the resin flow promote the shrinkage and deformation of the part. Durin... Coated sands are used extensively for additive manufacturing sand molds in the metal casting process, and the packing structure changes caused by the resin flow promote the shrinkage and deformation of the part. During the coated sand heating, the resin on the surface flowing to the contact points of the particles forms the resin neck and causes particles to pack close to each other. In this work, the diameters of the coated ceramsite sand before and after heating were measured based on in-situ experimental observations with image measuring apparatus and blue laser, to obtain the relationship between resin coating thickness and the particle diameter. The particle packing model was established to describe the particles' achievement of a stable state one by one. A re-packing simulation was then performed after reducing the particle diameter according to the resin coating thickness, to obtain the shrinkage ratios at different particle size distributions. It was found that the resin coating thickness increased from 0.8 to 2.3 μm as the particle diameter increased from 107 to 500 μm, for the coated ceramsite sand with the resin content of 2 wt.%; the shrinkage ratio decreased first and then increased as the particle diameter increased. The experimental minimum shrinkage ratio was 3.28%, and the corresponding particle diameter was 300-375 μm, while the minimum shrinkage ratio obtained by simulation was 3.43%, and the corresponding particle diameter was 214-300 μm. After mixing the five groups proportionally, the shrinkage ratios of the simulation and experiment dropped to 2.81% and 3.04%, respectively, indicating the best results. 展开更多
关键词 coated ceramsite sand resin coating thickness particle packing shrinkage ratio additive manufacturing
下载PDF
A New Kind of Roof Greening System in China
14
《环境科学前沿(中英文版)》 2015年第2期29-38,共10页
With the wider use of green roofs, new technology and new materials are being applied to the field of building roof greening forbuildings. This paper introduces BRGS (built- up roof greening system), a new type of r... With the wider use of green roofs, new technology and new materials are being applied to the field of building roof greening forbuildings. This paper introduces BRGS (built- up roof greening system), a new type of roof greening system that differs from roofgreening systems currently used in China in that it integrates a main and an auxiliary water storage capacity into the roof greeningsystem. Compared to other systems currently in use, BRGS offers a simpler, quicker, less labor intensive construction process;lighter floor load; and lower long term maintenance requirements and costs. It also makes full use of rainwater and snowmelt,which provides a significant amount of water to plants. This paper also introduces a planting experiment, the results of whichindicate that plants during their early stages of growth tolerate an alkaline environment, and that after a period of time, the pHvalue level of water stored in BRGS approaches 8.3, so we can conclude that BRGS is suitable for construction engineering. 展开更多
关键词 ROOF GREENING BUILT-UP ROOF GREENING SYSTEM PLANTING Experiment Shale ceramsite Concrete Finite Element
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部