期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CGABC-SVM的多特征融合音乐分类算法研究
被引量:
1
1
作者
韩彬彬
程科
王义军
《计算机与数字工程》
2023年第4期820-825,共6页
对电子音乐进行合理且有效的分类,可以使用户能快速搜索到喜爱的音乐,也使音乐推荐系统能进行更加精准的推荐。为了提高音乐分类的准确性,论文提出了基于CGABC-SVM的多特征融合音乐分类方法。在特征提取方面,针对单一音频特征表达不完...
对电子音乐进行合理且有效的分类,可以使用户能快速搜索到喜爱的音乐,也使音乐推荐系统能进行更加精准的推荐。为了提高音乐分类的准确性,论文提出了基于CGABC-SVM的多特征融合音乐分类方法。在特征提取方面,针对单一音频特征表达不完整的问题,提取基音频率、共振峰、梅尔频率倒谱系数和相对谱-感知线性预测4种音频特征,组成多特征融合矩阵。在分类器选择方面,针对支持向量机(SVM)参数难以选取的问题,论文使用交叉全局人工蜂群算法(CGABC)来优化SVM的参数,构建CGABC-SVM音乐分类模型。实验结果表明,论文音乐分类方法可以有效地区分各种音乐信号,音乐分类的准确性显著好于对比音乐分类方法。
展开更多
关键词
音乐分类
cgabc
SVM
特征融合
下载PDF
职称材料
题名
基于CGABC-SVM的多特征融合音乐分类算法研究
被引量:
1
1
作者
韩彬彬
程科
王义军
机构
江苏科技大学计算机学院
中铁隧道集团三处有限公司
出处
《计算机与数字工程》
2023年第4期820-825,共6页
文摘
对电子音乐进行合理且有效的分类,可以使用户能快速搜索到喜爱的音乐,也使音乐推荐系统能进行更加精准的推荐。为了提高音乐分类的准确性,论文提出了基于CGABC-SVM的多特征融合音乐分类方法。在特征提取方面,针对单一音频特征表达不完整的问题,提取基音频率、共振峰、梅尔频率倒谱系数和相对谱-感知线性预测4种音频特征,组成多特征融合矩阵。在分类器选择方面,针对支持向量机(SVM)参数难以选取的问题,论文使用交叉全局人工蜂群算法(CGABC)来优化SVM的参数,构建CGABC-SVM音乐分类模型。实验结果表明,论文音乐分类方法可以有效地区分各种音乐信号,音乐分类的准确性显著好于对比音乐分类方法。
关键词
音乐分类
cgabc
SVM
特征融合
Keywords
music classification
cgabc
SVM
feature fusion
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CGABC-SVM的多特征融合音乐分类算法研究
韩彬彬
程科
王义军
《计算机与数字工程》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部