Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. T...Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.展开更多
The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results reveale...The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results revealed that:1) Both reaction systems are initiated by Ti(~3F) atom attacking the C atom of CH2C12 and CHCl3 to activate a C-Cl bond;2) Both reaction systems were carried out via triplet reaction channels;3) CH2=TiCl2 has singlet and triplet isomers,and the singlet one is more stable;4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti;5) Only singlet HC÷TiCl3 was located,and the Mulliken atomic spin densities show that the two single electrons are mostly on the C atom.展开更多
The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the ab...The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.展开更多
基金This work was supported by the Chinese Academy of Engineering Physics (No.51480030105JW1301) and the National Natural Science Foundation of China (No.10534010, No.10374036, and No.10374037).
文摘Using density functional theory with generalized gradient approximation and hybrid functional, we studied the properties of energy, charge population, and vibration of CH2 and CH3 adsorbed on Cun (n=1-6) clusters. The results show that the DFT calculation with the hybrid functional matches the experimental results better in both cases. The calculation results indicate that the adsorption of CH2 is stronger than that of CH3. During adsorption, the charges transfer from Cu to CH2 or CH3. The obtained vibrational frequencies for different modes of CH2 and CH3 adsorbed on Cun agree well with the experimental results for the adsorption on Cu(111) surface.
基金financially supported by the National Natural Science Foundation of China(11174215)Natural Science Foundation of Shandong Province(ZR2012BL10)the University Science and Technology Project of Shandong Province(No.J13LD05)
文摘The reaction mechanisms of Ti(~3F) + CH2C12→CH2=TiCl2 and Ti(~3F) + CHC13→HC÷TiCl3 were investigated with Gaussian 03 program package at the B3PW91/6-311++G(d,p)level.The computational results revealed that:1) Both reaction systems are initiated by Ti(~3F) atom attacking the C atom of CH2C12 and CHCl3 to activate a C-Cl bond;2) Both reaction systems were carried out via triplet reaction channels;3) CH2=TiCl2 has singlet and triplet isomers,and the singlet one is more stable;4) The HOMO of CH2=TiCl2(S) illustrates a π-bonding interaction between C and Ti;5) Only singlet HC÷TiCl3 was located,and the Mulliken atomic spin densities show that the two single electrons are mostly on the C atom.
文摘The properties of C-H vibration softening for CH2 and CHa radicals absorbed on Cun(n=1-6) clusters have been investigated, using the density functional theory with hybrid functional. The results indicate that the absorption of CH2 on Cu clusters is stronger than the case of CH3. The vibrational frequencies of C-H bonding agree with the experimental results obtained for CH2 and CH3 absorbed on Cu(111). With the increase of cluster size, the softening (Einstein shift) of C-H vibrational modes become stronger.