Objective This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3(LOXL3)affects the autophagy in chondrocytes in osteoarthritis(OA),specifically through the activation of mammalian targe...Objective This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3(LOXL3)affects the autophagy in chondrocytes in osteoarthritis(OA),specifically through the activation of mammalian target of rapamycin complex 1(mTORC1).Methods To establish an OA model,rats underwent anterior cruciate ligament transection(ACLT).Chondrocytes were isolated from cartilage tissues and cultured.Western blotting was performed to assess the expression of LOXL3,Rheb,phosphorylation of p70S6K(p-p70S6K,a downstream marker of mTORC1),and autophagy markers.The autophagy of chondrocytes was observed using an immunofluorescence assay.Results The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage,in comparison to those from the normal cartilage.The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K,as well as an increase in the expression of autophagy-related proteins.Additionally,the effect of LOXL3 could be reversed through the silencing of Rheb.The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy.Conclusion LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.展开更多
It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic...It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic differentiation of articular chondrocytes. To further clarify the crucial target genes that mediate transformation growth factor-β (TGF-β)/Smad3 signals on articular chondrocytes differentiation and investigate the underlying molecular mechanism of osteoarthritis, microarrays were used to perform comparative transcriptional profiling in the articular cartilage between Smad3^ex8/ex8and wild-type mice on day five after birth. The gene profding results showed that the activity of bone morphogenetic protein (BMP) and TGF-β/cell division cycle 42 (Cdc42) signaling pathways were enhanced in Smad3^ex8/ex8 chondrocytes. Moreover, there was altered gene expression in growth hormone/insulin-like growth factor 1 (Igfl) axis and fibroblast growth factor (Fgf) signaling pathway. Notably, protein synthesis related genes and electron transport chain related genes were upregulated in Smad3^ex8/ex8 chondrocytes, implying that accelerated protein synthesis and enhanced cellular respiration might contribute to hypertrophic differentiation of articular chondrocytes and the pathogenesis of osteoarthritis.展开更多
Objective To investigate the in vitro effect of caffeic acid phenethyl ester (CAPE), a NF-KB inhibitor, on the apoptosis of osteoarthritic (OA) chondrocytes and on the regulation of the gelatinases matrix metallop...Objective To investigate the in vitro effect of caffeic acid phenethyl ester (CAPE), a NF-KB inhibitor, on the apoptosis of osteoarthritic (OA) chondrocytes and on the regulation of the gelatinases matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9). Methods Annexin V-FITC/propidium iodide (PI) labeling and western blotting were used to observe and determine the apoptosis in TNFa-stimulated primary cultured osteoarthritic chondrocytes. Also, gelatin zymography was applied to examine MMP-2 and MMP-9 activities in supernatants. Results it was confirmed by both flow cytometry and western blotting that chondrocytes from OA patients have an apoptotic background. Use of CAPE in combination with 10 ng/mL of TNFa for 24 h facilitated the apoptosis. MMP-9 in the supernatant could be autoactivated (from proMMP-9 to active MMP-9), and the physiologic calcium concentration (2.5 mmol/L) could delay the autoactivation of MMP-9. The activities of MMP-2 and MMP-9 in the fresh supernatant increased significantly in response to stimulation by 10 ng/mL of TNFa for 24 h. The stimulatory effect of TNFa just on proMMP-9 was counteracted significantly by CAPE. Conclusion NF-KB could prevent chondrocytes apoptosis though its activation was attributed to the increase of proMMP-9 activity induced by TNFa (a pro-apoptotic factor). Therefore, therapeutic NF-KB inhibitor was a 'double-edged swords' to the apoptosis of chondrocytes and the secretion of MMP-9.展开更多
Objective To investigate the expression of miRNA-140 in chondrocytes and synovial fluid of osteoarthritis(OA) patients, and explore the relationship between the miRNA-140 expression and OA severity. Methods This study...Objective To investigate the expression of miRNA-140 in chondrocytes and synovial fluid of osteoarthritis(OA) patients, and explore the relationship between the miRNA-140 expression and OA severity. Methods This study enrolled 30 OA patients who underwent total knee arthroplasty for chondrocytes sampling and 30 OA patients who underwent intra-articular injection for synovial fluid sampling. All OA patients were grouped into mild [Kellgren and Lawrence(KL) grade 1-2], moderate(KL grade 3) and severe(KL grade 4), with 10 in each subgroups for each sampling purposes. 7 non-OA patients and 10 patients with knee injury were collected for cartilage and synovial fluid sampling respectively as control groups. Chondrocytes were isolated from the cartilage tissue and cultured in vitro. Quantitative real time PCR for miRNA-140 in chondrocytes and synovial fluid were performed, and the U6 sn RNA was used as internal control. The expression difference of miRNA-140 among groups and correlation between the expression and the KL grade of OA were analysed using one-way ANOVA and Spearman test respectively. Results The expression of miRNA-140 in chondrocytes of knees in OA patients was reduced than that in normal knees, and the between-group difference was statistically significant(F=305.464, P<0.001). miRNA-140 could be detected in synovial fluid of both normal knees and OA knees, its relative expression level was reduced in synovial fluid of OA group compared with normal group, and the between-group difference was statistically significant as well(F=314.245, P<0.001). The relative expression level of miRNA-140 in both chondrocytes and synovial fluid were negatively correlated with the KL grade of OA(r=-0.969, P<0.001; r=-0.970, P<0.001). Conclusion miRNA-140 could be detected in chondrocytes and synovial fluid of OA patients, and its expression was negatively correlated with the severity of OA.展开更多
Objective To identify the osteogenesis genes whose expression is altered in hypertrophic chondrocytes treated with H2 O2.Methods Murine chondrogenitor cells(ATDC5) were differentiated into hypertrophic chondrocytes by...Objective To identify the osteogenesis genes whose expression is altered in hypertrophic chondrocytes treated with H2 O2.Methods Murine chondrogenitor cells(ATDC5) were differentiated into hypertrophic chondrocytes by InsulinTransferrin-Selenium(ITS) treatment, and then treated with H2 O2. Suitable conditions(concentration, time) were determined by using the MTT assay. After total RNA isolation and cD NA synthesis, the levels of 84 genes were determined using the PCR array, whereas quantitative RT-PCR was carried out to validate the PCR array data. Results We identified 9 up-regulated genes and 12 down-regulated genes, encoding proteins with various functions, such as collagen proteins, transcription factors, proteins involved in skeletal development and bone mineral metabolism, as well as cell adhesion molecules. Quantitative RT-PCR confirmed the altered expression of 5 down-regulated genes(Smad2, Smad4, transforming growth factor β receptor 1, transforming growth factor β receptor 3, and matrix metalloproteinase 10). Conclusions H2 O2 significantly changed the expression of several genes involved in a variety of biological functions. Because of the link between oxidative damage and Kashin-Beck disease, these genes may also be involved in the deep-zone necrosis of the cartilage observed in Kashin-Beck disease.展开更多
Objective: To investigate the possible effect of nivalenol on metabolism ofthe cultured chondrocytes and the protection of selenium. Methods: The quantitative analyses ofmetabolism in single- layer cultured chondrocyt...Objective: To investigate the possible effect of nivalenol on metabolism ofthe cultured chondrocytes and the protection of selenium. Methods: The quantitative analyses ofmetabolism in single- layer cultured chondrocytes were performed by biocliemical means and theimpairment of DNA was observed by both of the single cell microgel electrophoresis assay and theagarose gel electrophoresis assay. Results: In the media containing different concentrations ofnivalenol (0. 000 5-0. 020 0 mg/L), the amounts of DNA and proteoglycan in matrix of thechondrocytes were decreased. The syn-thesis of protein was reduced and the impairment of DNAdeteriorated with the increase of the concentrations of nivalenol in tlte given dose. When seleniumwas added into the media, the impairment by nivalenol was decreased. In the media containingdifferent concentrations of nivalenol, however, the lipid peroxidation of the chondrocytes was notaffected by nivalenol, yet the amount of lipid peroxides significantly declined. Conclusion:Nivalenol may evidently cause impairment of the chondrocytes when its concentrations are in thepresent experimental range. Selenium can protect cultured cliondrocytes, but cannot prevent theirDNA from being impaired.展开更多
Free fatty acids(FFAs), which are elevated with metabolic syndrome, are considered the principal offender exerting lipotoxicity. Few previous studies have reported a causal relationship between FFAs and osteoarthritis...Free fatty acids(FFAs), which are elevated with metabolic syndrome, are considered the principal offender exerting lipotoxicity. Few previous studies have reported a causal relationship between FFAs and osteoarthritis pathogenesis. However, the molecular mechanism by which FFAs exert lipotoxicity and induce osteoarthritis remains largely unknown. We here observed that oleate at the usual clinical range does not exert lipotoxicity while oleate at high pathological ranges exerted lipotoxicity through apoptosis in articular chondrocytes. By investigating the differential effect of oleate at toxic and nontoxic concentrations, we revealed that lipid droplet(LD) accumulation confers articular chondrocytes, the resistance to lipotoxicity. Using high fat diet-induced osteoarthritis models and articular chondrocytes treated with oleate alone or oleate plus palmitate, we demonstrated that articular chondrocytes gain resistance to lipotoxicity through protein kinase casein kinase 2(PKCK2)—six-transmembrane protein of prostate 2(STAMP2)—and fat-specific protein 27(FSP27)-mediated LD accumulation. We further observed that the exertion of FFAs-induced lipotoxicity was correlated with the increased concentration of cellular FFAs freed from LDs, whether FFAs are saturated or not. In conclusion, PKCK2/STAMP2/FSP27-mediated sequestration of FFAs in LD rescues osteoarthritic chondrocytes. PKCK2/STAMP2/FSP27 should be considered for interventions against metabolic OA.展开更多
Objective To investigate the effect on the structure of reestablished cartilage in vitro and CD44 expression on chondrocytes and compare the inducing effect on the reestablished cartilage in vitro between cor...Objective To investigate the effect on the structure of reestablished cartilage in vitro and CD44 expression on chondrocytes and compare the inducing effect on the reestablished cartilage in vitro between cortical bone matrix gelatin and cancellous bone matrix gelatin. Methods To plant human fetal chondrocytes on the BMG, the damage of the cultured chondrocytes was observed by the optical microscope (HE staining). The immunohistochemistry of CD44 was quantitative analysis by the image collection and analysis system. Results With the increasing concentration of T 2 toxin, the damage of chondroytes was more and more evident and CD44 expression was lowered. After adding selenium, the damage was relieved and CD44 expression increased. The density of chondrocytes on the cortical bone matrix gelatin was much higher than that on the cancellous bone matrix gelatin. Conclusion T 2 toxin can lower the CD44 expression on the chondrocytes and adding selenium can relieve the damage caused by T 2toxin and increased CD44 expression. The inducing effect on reestablished cartilage in vitro of cortical bone matrix gelatin was much higher than that of cancellous bone matrix gelatin.展开更多
The lentivirus-mediated u PA interference in the proliferation, apoptosis, and secretion of osteoarthritic chondrocytes was examined in this study. Cells were obtained from the cartilage tissues of New Zealand white r...The lentivirus-mediated u PA interference in the proliferation, apoptosis, and secretion of osteoarthritic chondrocytes was examined in this study. Cells were obtained from the cartilage tissues of New Zealand white rabbits. They were cultured with interleukin(IL)-1β(10 ng/m L) for 24 h and then divided into three groups: u PA-si RNA group(cells transfected with u PA-si RNA lentiviruses), blank control group(untreated cells), and negative control group(cells transfected with empty vectors). Western blotting and real-time quantitative reverse transcription-PCR(RT-QPCR) were performed to detect the protein and m RNA expression levels of u PA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13 and MMP-14 in osteoarthritic chondrocytes. Cell Counting Kit-8, flow cytometry, and colony formation assay were used to examine the proliferation and apoptosis of chondrocytes. The results showed that after u PA-si RNA transfection, the protein and mR NA expression levels of uP A, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13, and MMP-14 were significantly decreased(P〈0.05 for MMP-1, MMP-9, MMP-10 and MMP-14, P〈0.01 for u PA, MMP-3 and MMP-13). Cell proliferation and colony formation rate were significantly higher and the cell apoptosis rate was significantly lower in u PA-si RNA group than in control groups(P〈0.01). The proportion of cells in G0/G1 phase was markedly increased and that in the S phase decreased, and the cell cycle was arrested at the G1/S phase in the control group. In the u PAsi RNA group, the proportion of cells in the S phase was significantly increased, resulting in a different proportion of cells in cell cycle phase(P〈0.01). It was suggested that the down-regulation of uP A gene could inhibit the expression of MMPs protein and cell apoptosis, increase the proliferation and colony formation of osteoarthritic chondrocytes.展开更多
Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissu...Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissues in surgery. AGEs were administered during chondrocytes culture. The rapamycin was used to induce autophagy. The cell viability was determined by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay.The expression of tumor necrosis factor-α(TNF-α) and nuclear factor-κ B(NF-κ B) was detected by quantitative real-time polymerase chain reaction. The reactive oxygen species(ROS) production and apoptosis of the chondrocytes were determined by fluorescent probe and flow cytometer, respectively. Results: The chondrocytes viability was significantly reduced after 12 h incubation with AGEs(P<0.01)). In contrast, rapamycin pretreatment increased the chondrocytes viability through autophagy. AGEs increased TNF-α and NF-κ B mRNA expression of chondrocytes and autophagy receded or proceeded the change. AGEs increased intracellular ROS accumulation and autophagy reversed the change. AGEs accelerated chondrocytes apoptosis and autophagy suspended apoptosis. Conclusions: Accumulation of AGEs may have an adverse role for chondrocytes by increasing TNF-α and NF-κB expression, ROS accumulation and apoptosis; meanwhile, autophagy ameliorates the AGEsinduced adverse effects.展开更多
Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and s...Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (1-3) plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT) and RNA component of telomerase (TR), and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results: Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 〈 0.0.5). Chondrocytes treated with T3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 〈 0.05); TERT and TR were not significantly reduced. The action of T3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions: The results suggest that FGFR3 inhibits chondrocyte proliferation and reducing telomerase activity indicating an important role for telomerase in capacity during bone elongation. by down-regulating TERT expression sustaining chondrocyte proliferative展开更多
Glucose metabolism is fundamental for the functions of all tissues,including cartilage.Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development,little is known ab...Glucose metabolism is fundamental for the functions of all tissues,including cartilage.Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development,little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis.We show here that genetic deletion of the glucose transporter Glutl in postnatal cartilage impairs cell proliferation and matrix production in growth plate(GPs)but paradoxically increases cartilage remnants in the metaphysis,resulting in shortening of long bones.On the other hand,articular cartilage(AC)with Glutl deficiency presents diminished cellularity and loss of proteoglycans,which ultimately progress to cartilage fibrosis.Moreover,predisposition to Glutl deficiency severely exacerbates injury-induced osteoarthritis.Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions,both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability.However,uncontrolled glutamine flux causes collagen overmodification,thus affecting extracellular matrix remodeling in both cartilage compartments.These results uncover the pivotal and distinct roles of Glutl-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.展开更多
Based on atomic force microscopy technique, we found that the chon- drocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid...Based on atomic force microscopy technique, we found that the chon- drocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relax- ation. We applied the inverse finite element analysis technique to determine nec- essary material parameters for porohyperelastic (PHE) model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress re- laxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.展开更多
Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of ...Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR-/-) had no discernable differences in total femoral length compared to control littermates. However, CartIR-/- mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-IR mRNA and protein levels. Subsequently, IGF-1 induced phosphorylafion of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR-/- mice when compared with that of the control littermates, which was associated with upregnlation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.展开更多
Objective: To study a comprehensive proteomic analysis of celecoxib in oseteoarthritis (OA) chondrocytes. Methods: OA chondrocytes were stimulated with celecoxib, IL-1β and IL-1β together with celecoxib. Proteins we...Objective: To study a comprehensive proteomic analysis of celecoxib in oseteoarthritis (OA) chondrocytes. Methods: OA chondrocytes were stimulated with celecoxib, IL-1β and IL-1β together with celecoxib. Proteins were extracted from the cells and subjected to 2-dimensional differential image gel electrophoresis (2D-DIGE). Proteins of interest were identified by mass spectrometry. Results: Eighty-six protein spots showed significantly different intensities with each reagent or reagent combination. AAA+ protein, HSP47/Serpin, cAMP-dependent protein kinase type II-beta regulatory subunit, alpha-actin-4 and tubulin decreased with the addition of celecoxib, while apolipoprotein A-V, glutamate carboxipeptide 2, mitochondrial stress-70 protein, sorting nexin-9 and GRP78 increased with the addition of celecoxib. GRP78 is a stress protein and may be chondroprotective. Celecoxib modulated IL-1β stimulated chondrocytes, and CD200R and moesin were identified as such resulting proteins. Conclusion: Protein profiles of OA chondrocytes changed after administration of celecoxib. Further investigation is needed to elucidate the function of each protein in OA chondrocytes.展开更多
Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with vario...Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.展开更多
In order to investigate the possibility of expression of exogenous gene in transduced articular chondrocytes, plasmid pcDNA3 rhBMP7 was delivered to cultured chondrocytes. Through immunohistochemical staining and RT ...In order to investigate the possibility of expression of exogenous gene in transduced articular chondrocytes, plasmid pcDNA3 rhBMP7 was delivered to cultured chondrocytes. Through immunohistochemical staining and RT PCR assay, the expression of rhBMP7 gene was detected. And the bioactivity of transgene expression product was detected through MTT assay as well. It was confirmed that exogenous gene could be expressed efficiently in transduced chondrocytes and the transgene expression product had obvious bioactivity. The present study provided a theoretical basis for gene therapy on the problems of articular cartilge.展开更多
Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of syn...Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of synovial fluid from OA展开更多
基金the National Natural Science Foundation of China(No.81702187)Natural Science Foundation of Jiangxi Province(No.20202BAB206019)+4 种基金Science Fund for Distinguished Young Scholars of Jiangxi Province(No.20224ACB216018)Scientific Talents Grants of Jiangxi Province(No.S2018LQCQ0800)Scientific Grants of Health Commission of Jiangxi Province(No.20194048)Scientific Innovation Talents Grants of Ganzhou(No.2019-60-08)Leading Talents Grants and Ph.D.Programs Foundation of Ganzhou People’s Hospital(No.Bsqd2019003)and Academic leaders Program of Ganzhou Institutes of Health.
文摘Objective This study aimed to investigate the potential mechanisms by which lysyl oxidase like 3(LOXL3)affects the autophagy in chondrocytes in osteoarthritis(OA),specifically through the activation of mammalian target of rapamycin complex 1(mTORC1).Methods To establish an OA model,rats underwent anterior cruciate ligament transection(ACLT).Chondrocytes were isolated from cartilage tissues and cultured.Western blotting was performed to assess the expression of LOXL3,Rheb,phosphorylation of p70S6K(p-p70S6K,a downstream marker of mTORC1),and autophagy markers.The autophagy of chondrocytes was observed using an immunofluorescence assay.Results The expression levels of both LOXL3 and Rheb proteins were upregulated in chondrocytes isolated from the OA model cartilage,in comparison to those from the normal cartilage.The silencing of LOXL3 resulted in a decrease in the protein levels of Rheb and p-p70S6K,as well as an increase in the expression of autophagy-related proteins.Additionally,the effect of LOXL3 could be reversed through the silencing of Rheb.The results of the immunofluorescence assay confirmed the impact of LOXL3 and Rheb on chondrocyte autophagy.Conclusion LOXL3 inhibits chondrocyte autophagy by activating the Rheb and mTORC1 signaling pathways.
基金This work was supported by the National Key Program on Basic Research of China (No. 2006BAI23B01-3)National Natural Scie- nce Foundation of China (No. 30430350, 30500)National High-Tech Research and Development Program (No. 2006AA 02Z168, Z000 6303041231).
文摘It has been previously reported that small mother against decapentaplegic 3 (Smad3) gene knockout (Smad3^ex8/ex8) mice displays phenotypes similar to human osteoarthritis, as characterized by abnormal hypertrophic differentiation of articular chondrocytes. To further clarify the crucial target genes that mediate transformation growth factor-β (TGF-β)/Smad3 signals on articular chondrocytes differentiation and investigate the underlying molecular mechanism of osteoarthritis, microarrays were used to perform comparative transcriptional profiling in the articular cartilage between Smad3^ex8/ex8and wild-type mice on day five after birth. The gene profding results showed that the activity of bone morphogenetic protein (BMP) and TGF-β/cell division cycle 42 (Cdc42) signaling pathways were enhanced in Smad3^ex8/ex8 chondrocytes. Moreover, there was altered gene expression in growth hormone/insulin-like growth factor 1 (Igfl) axis and fibroblast growth factor (Fgf) signaling pathway. Notably, protein synthesis related genes and electron transport chain related genes were upregulated in Smad3^ex8/ex8 chondrocytes, implying that accelerated protein synthesis and enhanced cellular respiration might contribute to hypertrophic differentiation of articular chondrocytes and the pathogenesis of osteoarthritis.
文摘Objective To investigate the in vitro effect of caffeic acid phenethyl ester (CAPE), a NF-KB inhibitor, on the apoptosis of osteoarthritic (OA) chondrocytes and on the regulation of the gelatinases matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9). Methods Annexin V-FITC/propidium iodide (PI) labeling and western blotting were used to observe and determine the apoptosis in TNFa-stimulated primary cultured osteoarthritic chondrocytes. Also, gelatin zymography was applied to examine MMP-2 and MMP-9 activities in supernatants. Results it was confirmed by both flow cytometry and western blotting that chondrocytes from OA patients have an apoptotic background. Use of CAPE in combination with 10 ng/mL of TNFa for 24 h facilitated the apoptosis. MMP-9 in the supernatant could be autoactivated (from proMMP-9 to active MMP-9), and the physiologic calcium concentration (2.5 mmol/L) could delay the autoactivation of MMP-9. The activities of MMP-2 and MMP-9 in the fresh supernatant increased significantly in response to stimulation by 10 ng/mL of TNFa for 24 h. The stimulatory effect of TNFa just on proMMP-9 was counteracted significantly by CAPE. Conclusion NF-KB could prevent chondrocytes apoptosis though its activation was attributed to the increase of proMMP-9 activity induced by TNFa (a pro-apoptotic factor). Therefore, therapeutic NF-KB inhibitor was a 'double-edged swords' to the apoptosis of chondrocytes and the secretion of MMP-9.
基金Supported by the National Natural Science Foundation of China(No.81672219No.81601936)the Science and Technology Support Program of Sichuan province(No.2014SZ0023-2)
文摘Objective To investigate the expression of miRNA-140 in chondrocytes and synovial fluid of osteoarthritis(OA) patients, and explore the relationship between the miRNA-140 expression and OA severity. Methods This study enrolled 30 OA patients who underwent total knee arthroplasty for chondrocytes sampling and 30 OA patients who underwent intra-articular injection for synovial fluid sampling. All OA patients were grouped into mild [Kellgren and Lawrence(KL) grade 1-2], moderate(KL grade 3) and severe(KL grade 4), with 10 in each subgroups for each sampling purposes. 7 non-OA patients and 10 patients with knee injury were collected for cartilage and synovial fluid sampling respectively as control groups. Chondrocytes were isolated from the cartilage tissue and cultured in vitro. Quantitative real time PCR for miRNA-140 in chondrocytes and synovial fluid were performed, and the U6 sn RNA was used as internal control. The expression difference of miRNA-140 among groups and correlation between the expression and the KL grade of OA were analysed using one-way ANOVA and Spearman test respectively. Results The expression of miRNA-140 in chondrocytes of knees in OA patients was reduced than that in normal knees, and the between-group difference was statistically significant(F=305.464, P<0.001). miRNA-140 could be detected in synovial fluid of both normal knees and OA knees, its relative expression level was reduced in synovial fluid of OA group compared with normal group, and the between-group difference was statistically significant as well(F=314.245, P<0.001). The relative expression level of miRNA-140 in both chondrocytes and synovial fluid were negatively correlated with the KL grade of OA(r=-0.969, P<0.001; r=-0.970, P<0.001). Conclusion miRNA-140 could be detected in chondrocytes and synovial fluid of OA patients, and its expression was negatively correlated with the severity of OA.
基金Supported by the National Natural Science Foundation of China(81573102 and 81273006)the Natural Science Fund Projects of Shaanxi Province(2017JM812)
文摘Objective To identify the osteogenesis genes whose expression is altered in hypertrophic chondrocytes treated with H2 O2.Methods Murine chondrogenitor cells(ATDC5) were differentiated into hypertrophic chondrocytes by InsulinTransferrin-Selenium(ITS) treatment, and then treated with H2 O2. Suitable conditions(concentration, time) were determined by using the MTT assay. After total RNA isolation and cD NA synthesis, the levels of 84 genes were determined using the PCR array, whereas quantitative RT-PCR was carried out to validate the PCR array data. Results We identified 9 up-regulated genes and 12 down-regulated genes, encoding proteins with various functions, such as collagen proteins, transcription factors, proteins involved in skeletal development and bone mineral metabolism, as well as cell adhesion molecules. Quantitative RT-PCR confirmed the altered expression of 5 down-regulated genes(Smad2, Smad4, transforming growth factor β receptor 1, transforming growth factor β receptor 3, and matrix metalloproteinase 10). Conclusions H2 O2 significantly changed the expression of several genes involved in a variety of biological functions. Because of the link between oxidative damage and Kashin-Beck disease, these genes may also be involved in the deep-zone necrosis of the cartilage observed in Kashin-Beck disease.
基金Supported by the National Natural Science Foundation of China(30170831)
文摘Objective: To investigate the possible effect of nivalenol on metabolism ofthe cultured chondrocytes and the protection of selenium. Methods: The quantitative analyses ofmetabolism in single- layer cultured chondrocytes were performed by biocliemical means and theimpairment of DNA was observed by both of the single cell microgel electrophoresis assay and theagarose gel electrophoresis assay. Results: In the media containing different concentrations ofnivalenol (0. 000 5-0. 020 0 mg/L), the amounts of DNA and proteoglycan in matrix of thechondrocytes were decreased. The syn-thesis of protein was reduced and the impairment of DNAdeteriorated with the increase of the concentrations of nivalenol in tlte given dose. When seleniumwas added into the media, the impairment by nivalenol was decreased. In the media containingdifferent concentrations of nivalenol, however, the lipid peroxidation of the chondrocytes was notaffected by nivalenol, yet the amount of lipid peroxides significantly declined. Conclusion:Nivalenol may evidently cause impairment of the chondrocytes when its concentrations are in thepresent experimental range. Selenium can protect cultured cliondrocytes, but cannot prevent theirDNA from being impaired.
基金supported by a grant from the National Research Foundation of Korea(NRF)funded by the Korean Government(MISP)(No.2015R1A2A1A10051603)
文摘Free fatty acids(FFAs), which are elevated with metabolic syndrome, are considered the principal offender exerting lipotoxicity. Few previous studies have reported a causal relationship between FFAs and osteoarthritis pathogenesis. However, the molecular mechanism by which FFAs exert lipotoxicity and induce osteoarthritis remains largely unknown. We here observed that oleate at the usual clinical range does not exert lipotoxicity while oleate at high pathological ranges exerted lipotoxicity through apoptosis in articular chondrocytes. By investigating the differential effect of oleate at toxic and nontoxic concentrations, we revealed that lipid droplet(LD) accumulation confers articular chondrocytes, the resistance to lipotoxicity. Using high fat diet-induced osteoarthritis models and articular chondrocytes treated with oleate alone or oleate plus palmitate, we demonstrated that articular chondrocytes gain resistance to lipotoxicity through protein kinase casein kinase 2(PKCK2)—six-transmembrane protein of prostate 2(STAMP2)—and fat-specific protein 27(FSP27)-mediated LD accumulation. We further observed that the exertion of FFAs-induced lipotoxicity was correlated with the increased concentration of cellular FFAs freed from LDs, whether FFAs are saturated or not. In conclusion, PKCK2/STAMP2/FSP27-mediated sequestration of FFAs in LD rescues osteoarthritic chondrocytes. PKCK2/STAMP2/FSP27 should be considered for interventions against metabolic OA.
文摘Objective To investigate the effect on the structure of reestablished cartilage in vitro and CD44 expression on chondrocytes and compare the inducing effect on the reestablished cartilage in vitro between cortical bone matrix gelatin and cancellous bone matrix gelatin. Methods To plant human fetal chondrocytes on the BMG, the damage of the cultured chondrocytes was observed by the optical microscope (HE staining). The immunohistochemistry of CD44 was quantitative analysis by the image collection and analysis system. Results With the increasing concentration of T 2 toxin, the damage of chondroytes was more and more evident and CD44 expression was lowered. After adding selenium, the damage was relieved and CD44 expression increased. The density of chondrocytes on the cortical bone matrix gelatin was much higher than that on the cancellous bone matrix gelatin. Conclusion T 2 toxin can lower the CD44 expression on the chondrocytes and adding selenium can relieve the damage caused by T 2toxin and increased CD44 expression. The inducing effect on reestablished cartilage in vitro of cortical bone matrix gelatin was much higher than that of cancellous bone matrix gelatin.
基金supported by grants from the National Natural Science Foundation of China(Nos.81160225,812604531,and 81360451)the Xinjiang Bingtuan Special Program of Medical Science(Nos.2011BC004,2013BA020,and 2014BC003)
文摘The lentivirus-mediated u PA interference in the proliferation, apoptosis, and secretion of osteoarthritic chondrocytes was examined in this study. Cells were obtained from the cartilage tissues of New Zealand white rabbits. They were cultured with interleukin(IL)-1β(10 ng/m L) for 24 h and then divided into three groups: u PA-si RNA group(cells transfected with u PA-si RNA lentiviruses), blank control group(untreated cells), and negative control group(cells transfected with empty vectors). Western blotting and real-time quantitative reverse transcription-PCR(RT-QPCR) were performed to detect the protein and m RNA expression levels of u PA, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13 and MMP-14 in osteoarthritic chondrocytes. Cell Counting Kit-8, flow cytometry, and colony formation assay were used to examine the proliferation and apoptosis of chondrocytes. The results showed that after u PA-si RNA transfection, the protein and mR NA expression levels of uP A, MMP-1, MMP-3, MMP-9, MMP-10, MMP-13, and MMP-14 were significantly decreased(P〈0.05 for MMP-1, MMP-9, MMP-10 and MMP-14, P〈0.01 for u PA, MMP-3 and MMP-13). Cell proliferation and colony formation rate were significantly higher and the cell apoptosis rate was significantly lower in u PA-si RNA group than in control groups(P〈0.01). The proportion of cells in G0/G1 phase was markedly increased and that in the S phase decreased, and the cell cycle was arrested at the G1/S phase in the control group. In the u PAsi RNA group, the proportion of cells in the S phase was significantly increased, resulting in a different proportion of cells in cell cycle phase(P〈0.01). It was suggested that the down-regulation of uP A gene could inhibit the expression of MMPs protein and cell apoptosis, increase the proliferation and colony formation of osteoarthritic chondrocytes.
文摘Objective: To study the adverse effects of advanced glycation end products(AGEs) on chondrocytes and the role of autophagy in this process. Methods: Chondrocytes were harvested from the human articular cartilage tissues in surgery. AGEs were administered during chondrocytes culture. The rapamycin was used to induce autophagy. The cell viability was determined by 3-[4,5-dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide(MTT) assay.The expression of tumor necrosis factor-α(TNF-α) and nuclear factor-κ B(NF-κ B) was detected by quantitative real-time polymerase chain reaction. The reactive oxygen species(ROS) production and apoptosis of the chondrocytes were determined by fluorescent probe and flow cytometer, respectively. Results: The chondrocytes viability was significantly reduced after 12 h incubation with AGEs(P<0.01)). In contrast, rapamycin pretreatment increased the chondrocytes viability through autophagy. AGEs increased TNF-α and NF-κ B mRNA expression of chondrocytes and autophagy receded or proceeded the change. AGEs increased intracellular ROS accumulation and autophagy reversed the change. AGEs accelerated chondrocytes apoptosis and autophagy suspended apoptosis. Conclusions: Accumulation of AGEs may have an adverse role for chondrocytes by increasing TNF-α and NF-κB expression, ROS accumulation and apoptosis; meanwhile, autophagy ameliorates the AGEsinduced adverse effects.
基金supported by W.K. Kellogg Endowmentthe infrastructure support of the Department of Animal Science, College of Agricultural and Environmental Sciences+1 种基金the California Agricultural Experiment Station of the University of California-Davis(CA-D*-ASC-5256-AH)financial assistance from Scholarships funded by the Ford Family Foundation and the endowment of G. Kirk Swingle
文摘Background: Fibroblast growth factor receptor 3 (FGFR3) inhibits growth-plate chondrocyte proliferation and limits bone elongation. Gain-of-function FGFR3 mutations cause dwarfism, reduced telomerase activity and shorter telomeres in growth plate chondroyctes suggesting that FGFR3 reduces proliferative capacity, inhibits telomerase, and enhances senescence. Thyroid hormone (1-3) plays a role in cellular maturation of growth plate chondrocytes and a known target of T3 is FGFR3. The present study addressed whether reduced FGFR3 expression enhanced telomerase activity, mRNA expression of telomerase reverse transcriptase (TERT) and RNA component of telomerase (TR), and chondrocyte proliferation, and whether the stimulation of FGFR3 by T3 evoked the opposite response. Results: Sheep growth-plate proliferative zone chondrocytes were cultured and transfected with siRNA to reduce FGFR3 expression; FGFR3 siRNA reduced chondrocyte FGFR3 mRNA and protein resulting in greater proliferation and increased TERT mRNA expression and telomerase activity (p 〈 0.0.5). Chondrocytes treated with T3 significantly enhanced FGFR3 mRNA and protein expression and reduced telomerase activity (p 〈 0.05); TERT and TR were not significantly reduced. The action of T3 at the growth plate may be partially mediated through the FGFR3 pathway. Conclusions: The results suggest that FGFR3 inhibits chondrocyte proliferation and reducing telomerase activity indicating an important role for telomerase in capacity during bone elongation. by down-regulating TERT expression sustaining chondrocyte proliferative
基金This work was supported by the following NIH/NIAMS grants:R01 grants(AR069605 and AR079100 to RJ.O.as well as AR075860 and AR077616 to J.S.),an R21 grant(AR077226 to J.S.),a P30 Core Center grant(AR057235 to Musculoskeletal Research Center)an NCI grant(R35ES028365 to G.P.).
文摘Glucose metabolism is fundamental for the functions of all tissues,including cartilage.Despite the emerging evidence related to glucose metabolism in the regulation of prenatal cartilage development,little is known about the role of glucose metabolism and its biochemical basis in postnatal cartilage growth and homeostasis.We show here that genetic deletion of the glucose transporter Glutl in postnatal cartilage impairs cell proliferation and matrix production in growth plate(GPs)but paradoxically increases cartilage remnants in the metaphysis,resulting in shortening of long bones.On the other hand,articular cartilage(AC)with Glutl deficiency presents diminished cellularity and loss of proteoglycans,which ultimately progress to cartilage fibrosis.Moreover,predisposition to Glutl deficiency severely exacerbates injury-induced osteoarthritis.Regardless of the disparities in glucose metabolism between GP and AC chondrocytes under normal conditions,both types of chondrocytes demonstrate metabolic plasticity to enhance glutamine utilization and oxidation in the absence of glucose availability.However,uncontrolled glutamine flux causes collagen overmodification,thus affecting extracellular matrix remodeling in both cartilage compartments.These results uncover the pivotal and distinct roles of Glutl-mediated glucose metabolism in two of the postnatal cartilage compartments and link some cartilage abnormalities to altered glucose/glutamine metabolism.
基金supported by ARC Future Fellowship Project(FT100100172)QUT Postgraduate Research Scholarship
文摘Based on atomic force microscopy technique, we found that the chon- drocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relax- ation. We applied the inverse finite element analysis technique to determine nec- essary material parameters for porohyperelastic (PHE) model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress re- laxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.
基金supported by the Hong Kong Research Grant Council General Research Fund (RGC GRF 475311)National Natural Science Foundation of China (NSFC81171717, 81130034)+1 种基金Shenzhen Strategic Development Fund (GJHS20120702105445379)the Chinese University of Hong Kong Direct Grant 2041545 to CW
文摘Insufficient insulin production or action in diabetic states is associated with growth retardation and impaired bone healing, while the underling mechanisms are unknown. In this study, we sought to define the role of insulin signaling in the growth plate. Insulin treatment of embryonic metatarsal bones from wild-type mice increased chondrocyte proliferation. Mice lacking insulin receptor (IR) selectively in chondrocytes (CartIR-/-) had no discernable differences in total femoral length compared to control littermates. However, CartIR-/- mice exhibited an increase in chondrocyte numbers in the growth plate than that of the controls. Chondrocytes lacking IR had elevated insulin-like growth factor (IGF)-IR mRNA and protein levels. Subsequently, IGF-1 induced phosphorylafion of Akt and ERK was enhanced, while this action was eliminated when the cells were treated with IGF-1R inhibitor Picropodophyllin. Deletion of the IR impaired chondrogenic differentiation, and the effect could not be restored by treatment of insulin, but partially rescued by IGF-1 treatment. Intriguingly, the size of hypertrophic chondrocytes was smaller in CartIR-/- mice when compared with that of the control littermates, which was associated with upregnlation of tuberous sclerosis complex 2 (TSC2). These results suggest that deletion of the IR in chondrocytes sensitizes IGF-1R signaling and action, IR and IGF-1R coordinate to regulate the proliferation, differentiation and hypertrophy of growth plate chondrocytes.
文摘Objective: To study a comprehensive proteomic analysis of celecoxib in oseteoarthritis (OA) chondrocytes. Methods: OA chondrocytes were stimulated with celecoxib, IL-1β and IL-1β together with celecoxib. Proteins were extracted from the cells and subjected to 2-dimensional differential image gel electrophoresis (2D-DIGE). Proteins of interest were identified by mass spectrometry. Results: Eighty-six protein spots showed significantly different intensities with each reagent or reagent combination. AAA+ protein, HSP47/Serpin, cAMP-dependent protein kinase type II-beta regulatory subunit, alpha-actin-4 and tubulin decreased with the addition of celecoxib, while apolipoprotein A-V, glutamate carboxipeptide 2, mitochondrial stress-70 protein, sorting nexin-9 and GRP78 increased with the addition of celecoxib. GRP78 is a stress protein and may be chondroprotective. Celecoxib modulated IL-1β stimulated chondrocytes, and CD200R and moesin were identified as such resulting proteins. Conclusion: Protein profiles of OA chondrocytes changed after administration of celecoxib. Further investigation is needed to elucidate the function of each protein in OA chondrocytes.
文摘Objective To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱcollagen by RT-PCR. Results After 7 days culture, MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/mL, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Conclusion GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation in mono-layer culture.
文摘In order to investigate the possibility of expression of exogenous gene in transduced articular chondrocytes, plasmid pcDNA3 rhBMP7 was delivered to cultured chondrocytes. Through immunohistochemical staining and RT PCR assay, the expression of rhBMP7 gene was detected. And the bioactivity of transgene expression product was detected through MTT assay as well. It was confirmed that exogenous gene could be expressed efficiently in transduced chondrocytes and the transgene expression product had obvious bioactivity. The present study provided a theoretical basis for gene therapy on the problems of articular cartilge.
文摘Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of synovial fluid from OA