期刊文献+
共找到597篇文章
< 1 2 30 >
每页显示 20 50 100
Evolution model and failure mechanisms of rainfall-induced cracked red clay slopes:insights from Xinshao County,China
1
作者 JIAO Weizhi ZHANG Ming +4 位作者 LI Peng XIE Junjin PANG Haisong LIU Fuxing YANG Long 《Journal of Mountain Science》 SCIE CSCD 2024年第3期867-881,共15页
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro... Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings. 展开更多
关键词 Red clay slopes Cracks Preferential flow Failure mechanism
原文传递
Evaluation of red soil-bentonite mixtures for compacted clay liners
2
作者 A.S.Devapriya T.Thyagaraj 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期697-710,共14页
Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are u... Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies. 展开更多
关键词 Compacted clay lines Hydraulic conductivity Wet-dry cycles Microstructure
下载PDF
Friction Characteristics Between Marine Clay and Construction Materials
3
作者 KOU Hailei HUANG Jiaming CHENG Yang 《Journal of Ocean University of China》 CAS CSCD 2024年第2期427-437,共11页
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar... Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM. 展开更多
关键词 marine clay construction material interface friction behavior surface roughness Finite Element Method
下载PDF
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
4
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Compression properties of cost-efficient porous expanded clay reinforced AA7075 syntactic foams fabricated by industrial-oriented die casting technology
5
作者 İsmail Cem Akgün Çağın Bolat Ali Gökşenli 《China Foundry》 SCIE EI CAS CSCD 2024年第1期60-70,共11页
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu... In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength. 展开更多
关键词 die casting porous materials metal matrix sytanctic foams expanded clay compressive deformation
下载PDF
Soil disturbance evaluation of soft clay based on stress-normalized smallstrain stiffness
6
作者 Yanguo Zhou Yu Tian +2 位作者 Junneng Ye Xuecheng Bian Yunmin Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期990-999,共10页
Soil disturbance includes the change of stress state and the damage of soil structure.The field testing indices reflect the combined effect of both changes and it is difficult to identify the soil structure disturbanc... Soil disturbance includes the change of stress state and the damage of soil structure.The field testing indices reflect the combined effect of both changes and it is difficult to identify the soil structure disturbance directly from these indices.In the present study,the small-strain shear modulus is used to characterize soil structure disturbance by normalizing the effective stress and void ratio based on Hardin equation.The procedure for evaluating soil sampling disturbance in the field and the further disturbance during the subsequent consolidation process in laboratory test is proposed,and then validated by a case study of soft clay ground.Downhole seismic testing in the field,portable piezoelectric bender elements for the drilled sample and bender elements in triaxial apparatus for the consolidated sample were used to monitor the shear wave velocity of the soil from intact to disturbed and even remolded states.It is found that soil sampling disturbance degree by conventional thin-wall sampler is about 30%according to the proposed procedure,which is slightly higher than that from the modified volume compression method proposed by Hong and Onitsuka(1998).And the additional soil disturbance induced by consolidation in laboratory could reach about 50%when the consolidation pressure is far beyond the structural yield stress,and it follows the plastic volumetric strain quite well. 展开更多
关键词 Natural clay Soil sample disturbance Shear wave velocity Small-strain shear modulus Hardin equation
下载PDF
Effect of NaCl Concentration on the Cumulative Strain and Pore Distribution of Clay under Cyclic Loading
7
作者 Xinshan Zhuang Shunlei Xia Ruijie Pan 《Fluid Dynamics & Materials Processing》 EI 2024年第2期447-461,共15页
Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GD... Clay,as the most common soil used for foundationfill,is widely used in various infrastructure projects.The phy-sical and mechanical properties of clay are influenced by the pore solution environment.This study uses a GDS static/dynamic triaxial apparatus and nuclear magnetic resonance experiments to investigate the effects of cyclic loading on clay foundations.Moreover,the development of cumulative strain in clay is analyzed,and afitting model for cumulative plastic strain is introduced by considering factors such as NaCl solution concentration,con-solidation stress ratio,and cycle number.In particular,the effects of the NaCl solution concentration and con-solidation stress ratio on the pore distribution of the test samples before and after cyclic loading are examined,and the relationship between microscopic pore size and macroscopic cumulative strain is obtained accordingly.Our results show that as the consolidation stress ratio grows,an increasing number of large pores in the soil samples are transformed into small pores.As the NaCl solution concentration becomes higher,the number of small pores gradually decreases,while the number of large pores remains unchanged.Cyclic loading causes the disappearance of the large pores in the samples,and the average pore size before cyclic loading is posi-tively correlated with the axial cumulative strain after cyclic loading.The cumulative strain produced by the soil under cyclic loading is inversely proportional to the NaCl solution concentration and consolidation stress ratio. 展开更多
关键词 Geotechnical engineering clay cyclic loading nuclear magnetic resonance NaCl solution consolidation ratio accumulative strain
下载PDF
Cement and Lime Stabilization Effect on the Evolutivity of an Expansive Overconsolidated Clay
8
作者 Mohamed Khemissa 《Journal of Civil Engineering and Architecture》 2024年第3期134-140,共7页
This paper presents and analyzes the results of a series of compaction,fragmentability and damage tests performed on an expansive overconsolidated clay treated with cement and lime.This clay was obtained from the urba... This paper presents and analyzes the results of a series of compaction,fragmentability and damage tests performed on an expansive overconsolidated clay treated with cement and lime.This clay was obtained from the urban site of Sidi-Hadjrès city(wilaya of M'sila,Algeria),where significant damages frequently appears in the road infrastructures,roadway systems and light structures.Tests results obtained show that the geotechnical parameters values deduced from these tests are concordant and confirm the evolutivity of this natural clay treated with composed Portland cement or extinct lime and compacted under optimum Proctor conditions. 展开更多
关键词 Expansive clay evolutivity treatment CEMENT LIME fragmentability coefficient damage coefficient
下载PDF
Clay Materials for Ceramics Application from N’Djamena in the Chad Republic: Mineralogical, Physicochemical and Microstructural Characterization
9
作者 Ndjolba Madjihingam Djoda Pagore +3 位作者 Jacques Richard Mache Bebbata Warabi Bertin Pagna Kagonbe Patrick Mountapmbeme Kouotou 《Journal of Materials Science and Chemical Engineering》 2024年第2期31-48,共18页
Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SE... Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application. 展开更多
关键词 clay Soils Characterization MINERALOGY Physicochemical Properties Ceramic Application
下载PDF
The Efect of Rich Synthetic Copper-rich Solution on Antiseepage Dense Pre-hydration Geosynthetic Clay Liner
10
作者 郭争争 GUAN Junfang +2 位作者 任子杰 GAO Huimin LI Peiyue 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第4期796-802,共7页
Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was ... Dense pre-hydrated geosynthetic clay liners(DPH GCLs)were manufactured as innovative materials accompanied by the advantage of lower hydraulic conductivity(k).The k of DPH GCLs permeated with de-ionized water(DIW)was 9.8×10^(−12) m/s.The effect of Cu^(2+)synthetic solution on DPH GCLs was discussed.Furthermore,the effect mechanism was studied on the basis of test technologies.A significant adverse impact on hydraulic performance of DPH GCLs is found when the concentration of Cu^(2+)is greater than 1 g/L.SEM,XRD,XRF,FTIR,and XPS analyses show that the effect of Cu^(2+)on DPH GCLs includes two steps.Firstly,Cu^(2+)interacts with hydrophobic organic matter(HOM),and the adhesion of bentonite is destroyed,and some holes appear.The Cu^(2+)contacts with bentonite directly,and Cu^(2+)interacts with bentonite through ion exchange.Passivated phenomenon occurs on the surface of the bentonite,and swelling ability of bentonite is reduced,which causes permeable DPH GCLs. 展开更多
关键词 geosynthetic clay liners fense pre-hydrated geosynthetic clay liners effect Cu^(2+)
原文传递
Production of an Eco-Cement by Clinker Substitution by the Mixture of Calcined Clay and Limestone, Songololo (DR Congo)
11
作者 Guyghens Bongwele Onanga Eric Kisonga Manuku +4 位作者 Riadh Ben Khalifa Daddy Patrick Ilito Lofongo Alain Preat Valentin Kanda Nkula Dominique Wetshondo Osomba 《Journal of Geoscience and Environment Protection》 2023年第7期67-80,共14页
Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of indus... Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials. 展开更多
关键词 clay Calcined clay LIMESTONE Cement ECO-CEMENT Songololo
下载PDF
Characterization of the Natural and Organomodified Clay Soil of Moukosso (Republic of Congo) by Dimethylsulfoxide: Application to the Adsorption of Lead (II) in Aqueous Solution
12
作者 Ottard Arnaud M. R. Ossiby Mwa Ngo Ferland Ngoro-Elenga +3 位作者 Erman E. Nzaba Madila Zita F. Diamouangana Mpissi Exaucé R. Kinzonzi Ngongot Joseph Marie Moutou 《Materials Sciences and Applications》 CAS 2023年第2期63-77,共15页
In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and g... In this study, the authors characterized the raw clayey soil of Moukosso and modified by dimethylsulfoxide (DMSO) by several analytical methods, namely: X-ray diffraction (XRD), Fourier transform infrared (FTIR) and gravimetric thermal analysis (TGA). The cation exchange capacity (CEC) was also determined. Mineralogical analysis by XRD revealed the presence of muscovite (29.7%), kaolinite (8.9%), anatase (2.4%) and quartz (58.9%). The characterization of the organo-clay by infrared and by thermogravimetric analysis confirmed the intercalation of DMSO by the presence of vibration bands at 1008 cm<sup>-1</sup> and 1070 cm<sup>-1</sup> and a strong increase in the loss of mass. The cation exchange capacity of the raw material is 7.4 meq/100g. Rapid adsorption of Pb<sup>2+</sup> ions was observed between 5 and 15 minutes of stirring time in both cases (raw clay and organomodified clay). The modeling of the isotherms by the models of Langmuir and Freudlich showed that these are of type S with a maximum amount of adsorption of 22.471 mg/g for the fine fraction and 41.493 mg/g for the clay intercalated with DMSO. Langmuir’s model best reproduces the experimental data of this study. 展开更多
关键词 clay DIMETHYLSULFOXIDE ORGANOclay CHARACTERIZATION ADSORPTION ISOTHERM Moukosso
下载PDF
Wettability of different clay mineral surfaces in shale:Implications from molecular dynamics simulations
13
作者 Kan-Yuan Shi Jun-Qing Chen +9 位作者 Xiong-Qi Pang Fu-Jie Jiang Sha-Sha Hui Zhen-Cheng Zhao Di Chen Qi Cong Tong Wang Hui-Yi Xiao Xiao-Bin Yang Yu-Ying Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期689-704,共16页
Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability ... Shale contains a lot of clay minerals. Clay minerals mainly exist in nano- and micro-meter sized particles, and the pore structure is complex, which leads to its extremely complex wettability. The surface wettability of clay minerals significantly affects the oil and gas-bearing capacity of shale reservoirs. Therefore, studying the wettability of common clay minerals in shale at the nanoscale is of great significance for shale hydrocarbon exploration and development. In this study, the wetting behavior of water in n-hexane and toluene on different clay mineral surfaces at the nanoscale was systematically studied using Molecular dynamics (MD) simulation. And the influencing factors of wettability were analyzed. Through the analysis of the morphological changes of water, relative concentration of water, RDF and interaction energy, it is concluded that the following order of water wettability on the surfaces of clay minerals: montmorillonite > chlorite > kaolinite > illite. Through the analysis of interaction energy, it is concluded that the hydrophilicity of four clay minerals is stronger than that of lipophilicity. And the main interactions between water and oil and the mineral surfaces were van der Waals force and electrostatic force. In addition, the temperature, liquid hydrocarbon type, and mineralization of water affected the wettability of clay minerals. The concentration of water on the surfaces of montmorillonite, kaolinite, and illite decreased with increasing temperature, and the water wettability decreased. At 298 K, the hydrophilicity of the surfaces of the clay minerals in toluene follows the order montmorillonite > chlorite > kaolinite > illite. The higher the NaHCO3 concentration in water, the weaker the wettability of the clay mineral surfaces to water. By comparing the previous experimental results with the MD simulation results, similar wetting characteristics were obtained, and the reliability of the simulation results was verified. MD simulation was used to explore the water wetting of the surfaces of four clay minerals in a shale reservoir from the micro level. This makes up for the lack of experimental means for clarifying the flow and production mechanisms of shale oil and gas and effectively improves the evaluation technology of shale. 展开更多
关键词 SHALE Molecular dynamics NANOSCALE WETTABILITY clay minerals
下载PDF
Rheological mechanical properties and its constitutive relation of soft rock considering influence of clay mineral composition and content
14
作者 Xuebin Li Xuesheng Liu +4 位作者 Yunliang Tan Ai Chen Honglei Wang Xin Wang Shenglong Yang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期62-76,共15页
Rheological mechanical properties of the soft rock are afected signifcantly by its main physical characteristics-clay mineral.In this study,taking the mudstone on the roof and foor in four typical mining regions as th... Rheological mechanical properties of the soft rock are afected signifcantly by its main physical characteristics-clay mineral.In this study,taking the mudstone on the roof and foor in four typical mining regions as the research object,frstly,the clay mineral characteristic was analyzed by the X-ray difraction test.Subsequently,rheological mechanical properties of mudstone samples under diferent confning pressures are studied through triaxial compression and creep tests.The results show that the clay mineral content of mudstone in diferent regions is diferent,which leads to signifcant diferences in its rheological properties,and these diferences have a good correlation with the content of montmorillonite and illite-montmorillonite mixed layer.Taking the montmorillonite content as an example,compared with the sample with 3.56%under the lower stress level,the initial creep deformation of the sample with 11.19%increased by 3.25 times,the viscosity coefcient and longterm strength decreased by 80.59%and 53.94%,respectively.Furthermore,based on the test results,the damage variation is constructed considering the montmorillonite content and stress level,and the M–S creep damage constitutive model of soft rock is established.Finally,the test results can be ftted with determination coefcients ranging from 0.9020 to 0.9741,which proves that the constitutive relation can refect the infuence of the clay mineral content in the samples preferably.This study has an important reference for revealing the long-term stability control mechanism of soft rock roadway rich in clay minerals. 展开更多
关键词 clay mineral Physical characteristic CREEP DAMAGE Constitutive model
下载PDF
Clay mineral compositions in the surface sediment of the Chanthaburi coast(northeastern Gulf of Thailand)and their implications on sediment provenance
15
作者 Min CHEN Hongshuai QI +4 位作者 Apitida WASUWATCHARAPONG Apichai KANCHANAPANT Wichien INTASEN Guobiao HUANG Xuan LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第5期1742-1752,共11页
Clay mineral composition represents an important tracer of sediment source area,migration processes,and paleoclimatic conditions.Clay mineral analysis was performed on 15 surface sediment samples collected from the co... Clay mineral composition represents an important tracer of sediment source area,migration processes,and paleoclimatic conditions.Clay mineral analysis was performed on 15 surface sediment samples collected from the coast of Chanthaburi,Thailand.Results show that the composition of clay minerals in the study area differs substantially from that in surrounding regions of the Gulf of Thailand.The clay minerals of the Chanthaburi coast are dominated by kaolinite(~56%),followed by smectite(~21%),illite(~14%),and low concentrations of chlorite(~8%).The average illite chemistry index and crystallinity are 0.93 and 0.32,respectively.Comparative analysis of the clay mineral composition of surface sediments in several typical areas around the Gulf of Thailand indicated that the clays of the Chanthaburi coast are mainly derived from parent rock weathering in the small watersheds of the Chanthaburi and Welu rivers and the surrounding islands.Terrestrial input from the northern coast of the Gulf of Thailand(excluding the Mekong River)was previously considered negligible;however,the present results indicate that such input has impact on the eastern Gulf of Thailand.The warm humid climatic conditions in Southeast Asia are the primary factors that affect the strong chemical weathering in the study area,followed by the nature of the parent rock. 展开更多
关键词 clay mineral surface sediment PROVENANCE coast of Thailand
下载PDF
Combined load bearing capacity of rigid piles embedded in a crossanisotropic clay deposit using 3D finite element lower bound
16
作者 Ardavan Izadi Reza Jamshidi Chenari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期717-737,共21页
In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-aniso... In this study,an iterative-based three-dimensional finite element lower bound in association with the second-order cone programming method is adopted to evaluate the limit load of a single pile embedded in cross-anisotropic soils under general loading condition.The lower bound solutions of the pile embedded in an anisotropic soil deposit can be found by formulating the element equilibrium,equilibrium of shear and normal stresses along discontinuities,boundary conditions,yield function,and optimizing the objective function through the second-order cone programming method in conjunction with an iterative-based update procedure.A general loading condition is considered to profile the expansion of the safe load in the vertical-horizontal-moment(V-H-M)space.The results of this study are compared and validated against three different cases including an isotropic lateral loading,anisotropic end bearing capacity,and a pile embedded in an isotropic soil deposit under general loading condition.A parametric study is conducted to evaluate the impact of different influencing factors.It was found that the effect of anisotropy on the variation of lateral limit load of a single pile is more pronounced than the corresponding vertical and bending moment limit loads,whereas the interface properties have more significant effects on the vertical and bending moment limit loads in comparison to the lateral limit load. 展开更多
关键词 Rigid pile Cross-anisotropy clay Combined loading Three-dimensional finite element lower BOUND
下载PDF
Resistance Factor of Caisson-Tip with Internal Fillet for Suction Caissons Penetrating into Clay
17
作者 WU Yu-qi LI Da-yong +2 位作者 ZHANG Yu-kun ZHANG Yu LI Shan-shan 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期525-532,共8页
This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson... This paper presents failure mechanisms of the soil at the caisson-tip with fillet during suction-assisted penetration of suction caissons in undrained clay.Theoretical solutions of resistance factor N_c of the caisson-tip are obtained in terms of the caisson-tip geometry ratio of the flat section of the caisson-tip to the caisson wall thickness m/t and adhesion factorsα_i along inside of caisson wall andα_b at the base of the caisson-tip.It is indicated that the factor N_c increases with the increase of m/t,α_i and a_b.The resistance factors N_c for the rough base(α_b=1)are larger by 0.57than that for the smooth base(α_b=0).Besides,the factors N_c of caisson-tip with flat base(m=t)are larger by 1.14 than that with full internal fillet(m=0).The required suction to penetrate suction caissons with various fillets is obtained in terms of the force equilibrium in vertical direction.The finite element limit analysis and centrifuge model test results are used to verify the rationality of the presented failure mechanisms and theoretical predictions. 展开更多
关键词 suction caissons suction-assisted penetration internal fillet resistance factor undrained clay
下载PDF
Clay mineral distribution characteristics of surface sediments in the South Mid-Atlantic Ridge
18
作者 Qiannan HU Chuanshun LI +4 位作者 Baoju YANG Xisheng FANG Huahua LÜ Xuefa SHI Jihua LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期897-908,共12页
Clay minerals are usually considered as important indicators to identify sources in both terrigenous and marine sediments.In particular,clay minerals in metalliferous sediments(MS)have long been studied in global ocea... Clay minerals are usually considered as important indicators to identify sources in both terrigenous and marine sediments.In particular,clay minerals in metalliferous sediments(MS)have long been studied in global oceans except in South Mid-Atlantic Ridge(SMAR)due to limited explorations.Thus,32 MS and 34 non-MS(NMS)samples were analyzed to clarify the distribution characteristics and mineral compositions of clay minerals.All the sediments were collected along the SMAR between 12°S and 27°S.After removal of organic matter and carbonate,clay fractions(<2μm)were investigated by Xray diffraction(XRD)analysis.Results show that clay mineral assemblages of surface MS consist dominantly of smectite,less abundant illite,chlorite,and kaolinite in average weight percentage of 30%,21%,18%,and 16%,respectively.On the other hand,clay mineral assemblages in the NMS consist mainly of illite,less abundant kaolinite,chlorite,and very scarce smectite in average weight percentage of 47%,29%,24%,and 0.2%,respectively.The clay fractions in MS are mainly composed of amorphous or poorly crystallized Fe/Mn oxyhydroxides,clay mineral,quartz,and plagioclase.However,the counterparts in the NMS are mainly composed of well-crystallized clay minerals,quartz,and plagioclase without the presence of Fe/Mn oxyhydroxides.It is suggested that most of the illite,kaolinite,and chlorite in both MS and NMS are likely aeolian dust in origin from South Africa continent.In addition,the abundance of kaolinite dominates the clay mineral assemblage at low latitudes,where the intensive chemical weathering of continental source rocks facilitating the formation of kaolinite.In terms of smectite,it is indicated of authigenic origin in consideration of only smectite is available in several MS and the absence in NMS.Moreover,the MS samples with only smectite available are always accompanied by goethite.Therefore,it is assumed that most of smectite occurred in studied area is the results of interaction between hydrothermal Fe-oxyhydroxide,silica,and seawater. 展开更多
关键词 metalliferous sediment South Mid-Atlantic Ridge(SMAR) clay mineral SMECTITE
下载PDF
Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths
19
作者 LI Da-yong HOU Xin-yu +2 位作者 ZHANG Yu-kun MA Shi-li LI Shan-shan 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期989-999,共11页
Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction res... Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized. 展开更多
关键词 suction caisson suction-assisted installation model tests undrained shear strength of clay soil deformation
下载PDF
Mechanical properties of a clay soil reinforced with rice husk under drained and undrained conditions
20
作者 Claudia Regina Bernardi Baldin Maiky Yamato Kawanami +3 位作者 Weiner Gustavo Silva Costa Vitor Reinaldo Bordignon Cristhyano Cavali da Luz Ronaldo Luis dos Santos Izzo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2676-2686,共11页
Fiber-reinforced soils have been increasingly used in geotechnical engineering.Over the years,research has sought to understand and investigate the influences of fibers as reinforcement in soilefiber mixtures.This stu... Fiber-reinforced soils have been increasingly used in geotechnical engineering.Over the years,research has sought to understand and investigate the influences of fibers as reinforcement in soilefiber mixtures.This study assessed the behavior of clayey soil in the city of Curitiba(Paraná,Brazil),adding rice husk fiber(RHF),an industrial waste from Cooperativa Agroindustrial in Alegrete(Rio Grande do Sul,Brazil).To evaluate the effect of the presence of natural RHF on the mechanical behavior of compacted soil,aspects such as the influence of fiber content and the drained and undrained behaviors of the soil were evaluated through unconfined triaxial compression tests.The following tests were realized:soil granulometry,specific mass of solids and Atterberg limits.Specimens were produced in quadruplicate for the soil and mixtures using the RHF contents of 0.5%,0.75%,1%and 1.5%to determine the unconfined compressive strength(UCS).Triaxial tests were realized on a pure soil specimen and the specimens with 1%RHF under confining pressures of 50 kPa,100 kPa,200 kPa and 400 kPa.The interactions at the interface between husk surface and soil were analyzed using scanning electron microscopy(SEM).In UCS tests,specimens with RHF percentages of 1%and 1.5%presented the highest results,with an increment of 36%compared to the soil without RHF.The results of the consolidated drained triaxial compression tests show that in terms of effective stress,there was a small difference in the strength of the compacted pure soil and soil with the addition of RHF.For the undrained tests,the strength increased with the inclusion of husk,with a reduction of 50%in cohesion and an increment of 22%in friction angle for specimens containing RHF compared to the soil without RHF additions. 展开更多
关键词 clay soil Rice husk Soil reinforcemen
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部