Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th...This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
This paper analyzes the characteristics of the destination distribution of trips and proposes a stratified sampling strategy for travel mode choice.The stratified sampling strategy can reduce the size of the alternati...This paper analyzes the characteristics of the destination distribution of trips and proposes a stratified sampling strategy for travel mode choice.The stratified sampling strategy can reduce the size of the alternative set;thus,the computation burden of simulation is decreased.Using the stratified sampling strategy,a combined choice model of the trip mode and destination is developed based on the Bayesian theory.Simulations are carried out to verify the proposed model.The results show that the combined choice model of the trip mode and destination can efficiently simulate travelers' choice behaviors.Furthermore,the forecasting accuracy of the combined choice model is higher than the one of the gravity model.Therefore,the proposed model is a powerful tool with which to analyze travelers' behaviors in selecting the trip mode.展开更多
Bedrock and concrete lining are typical composite structures in the engineering field and the stability of the geological body and engineering body is directly connected to the mechanical properties of the composite b...Bedrock and concrete lining are typical composite structures in the engineering field and the stability of the geological body and engineering body is directly connected to the mechanical properties of the composite body.Under this background,the study provides the transverse isotropic equivalent model of concrete-granite double-layer composite based on the notion of strain energy equivalence.Assuming that the strength failure of concrete and granite meets the Mohr-Coulomb criterion,then the strength failure model of the combined body considering the joint roughness coefficient(JRC)is derived,and the influences of JRC,the height ratio of concrete to granite,and confining pressure on the strength failure characteristics of the combined body are emphatically analyzed.Finally,the model applicability is illustrated by the uniaxial and triaxial compression tests on concrete monomer,granite monomer and concretegranite composite samples(CGCSs)with different JRCs.The results revealed that the compressive strength of the composite is closer to the concrete with lower strength in the combined body under different confining pressures.Adding interface roughness causes to raise the compressive strength of the composite due to interfacial adhesion between concrete and granite,and a slowing growth trend is observed in compressive strength as roughness.The model can provide a certain reference for the stability design and evaluation of engineering rock mass.展开更多
This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, pr...This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.展开更多
The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to elimin...The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.展开更多
Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the m...Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.展开更多
-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected t...-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected to the 2-D model for the Hangzhou Bay. The harmonic constants of diurnal constituent [ (K1+O1)/2],semidiurnal constituent (M2) and shallow water constituent (M4) are obtained. The results produced by the combined model are in better agreement with the observed ones than those produced solely by the original 2-D model. The combined model gives much more reliable results for tide-induced residual water level and current.展开更多
Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary ...Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.展开更多
This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analyti...This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.展开更多
Objective:To explore the feasibility of establishing the disease-syndrome combined animal model for immune thrombocytopenic purpura(ITP)without additional conditions.Methods:Three batches of data related to the ITP mo...Objective:To explore the feasibility of establishing the disease-syndrome combined animal model for immune thrombocytopenic purpura(ITP)without additional conditions.Methods:Three batches of data related to the ITP model mice obtained by replication at different time were analyzed,and whether the APS-injected model mice replicated through the passive immune modeling method could simulate the pathogenesis and clinical characteristics of human ITP was evaluated according to the differentiation criteria for diseasesyndrome combined model.Results:The APS-injected replicated ITP model mice possessed the following traits:(1)Compared with the normal group,the platelet count was significantly decreased,and coagulation time was significantly increased in the model group(P<.01).(2)Compared with the normal group,the medullary thrombocytogenous megakaryocytes were significantly decreased(P<.05,.01,.001).(3)The APS-injected sites and other parts of the model mice had spontaneous hemorrhage.(4)Behavioral changing signs were observed 1 week after the modeling(i.e.low activity,delayed activity,poor appetite,skin petechia/hemorrhage and spontaneous hemorrhage at the injected sites or other parts),and were getting more and more severe.Conclusion:According to the syndrome differentiation criteria for disease-syndrome combined model of ITP,the APS-injected animal model of ITP replicated through the passive immune modeling method without additional conditions possesses the characteristics of disease-syndrome combined model.It provides an ideal tool for the development of traditional Chinese medicine pharmacology experiment.展开更多
BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve function...BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system.展开更多
Objective:To study the application effect of short video combined with BOPPPS teaching mode in clinical anesthesia practice.Method:48 students assigned to clinical anesthesia in digestive endoscopy of Shanxi Bethune H...Objective:To study the application effect of short video combined with BOPPPS teaching mode in clinical anesthesia practice.Method:48 students assigned to clinical anesthesia in digestive endoscopy of Shanxi Bethune Hospital from July 1,2022 to April 1,2023 were selected as research objects.They were randomly divided into the control group(PowerPoint presentation teaching group)and the observation group(short video combined with BOPPPS teaching group),with 24 students in each group.After the internship,the students’theoretical and technical scores were tested,the effects of the two teaching modes were compared,and the students’satisfaction was investigated.Results:The test scores of students in the observation group were significantly better than those in the control group(P<0.05).The short video combined with BOPPPS teaching mode can significantly improve students’learning interest,operation skills,and memory(P<0.05).The students’satisfaction in the observation group was higher than that in the control group(P<0.05).Conclusion:In clinical practice,the application of short video combined with BOPPPS teaching mode has achieved great effect,which is worth further promotion and research.展开更多
A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for ...A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for solving this model is described.By using thismethod,the phase center of corrugated horn is discussed and calculated,and the variation of thephase center with distance and operating frequency is given.展开更多
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata...Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.展开更多
The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section o...The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.展开更多
A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level...A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level, it can describe them very well.展开更多
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2023JBZY024)Beijing Natural Science Foundation (Grant No.9244040)opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology (Grant No.SKLGP2023K015).
文摘This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
文摘This paper analyzes the characteristics of the destination distribution of trips and proposes a stratified sampling strategy for travel mode choice.The stratified sampling strategy can reduce the size of the alternative set;thus,the computation burden of simulation is decreased.Using the stratified sampling strategy,a combined choice model of the trip mode and destination is developed based on the Bayesian theory.Simulations are carried out to verify the proposed model.The results show that the combined choice model of the trip mode and destination can efficiently simulate travelers' choice behaviors.Furthermore,the forecasting accuracy of the combined choice model is higher than the one of the gravity model.Therefore,the proposed model is a powerful tool with which to analyze travelers' behaviors in selecting the trip mode.
基金The authors would like to acknowledge financial supports from the National Natural Science Foundation of China(Nos.41941019 and 52274145)Department of Science and Technology of Shaanxi Province(No.2021TD-55)+2 种基金“111”Center,Program of the Ministry of Education of China(No.B18046)Natural Science Foundation of Shaanxi Province(No.2020JQ-373)the Fundamental Research Funds for the Central Universities,CHD(No.300102261101).
文摘Bedrock and concrete lining are typical composite structures in the engineering field and the stability of the geological body and engineering body is directly connected to the mechanical properties of the composite body.Under this background,the study provides the transverse isotropic equivalent model of concrete-granite double-layer composite based on the notion of strain energy equivalence.Assuming that the strength failure of concrete and granite meets the Mohr-Coulomb criterion,then the strength failure model of the combined body considering the joint roughness coefficient(JRC)is derived,and the influences of JRC,the height ratio of concrete to granite,and confining pressure on the strength failure characteristics of the combined body are emphatically analyzed.Finally,the model applicability is illustrated by the uniaxial and triaxial compression tests on concrete monomer,granite monomer and concretegranite composite samples(CGCSs)with different JRCs.The results revealed that the compressive strength of the composite is closer to the concrete with lower strength in the combined body under different confining pressures.Adding interface roughness causes to raise the compressive strength of the composite due to interfacial adhesion between concrete and granite,and a slowing growth trend is observed in compressive strength as roughness.The model can provide a certain reference for the stability design and evaluation of engineering rock mass.
文摘This paper briefs the configuration and performance of large size gas turbines and their composed combined cycle power plants designed and produced by four large renown gas turbine manufacturing firms in the world, providing reference for the relevant sectors and enterprises in importing advanced gas turbines and technologies.
基金supported by the National Natural Science Foundation of China(71071077)the Ministry of Education Key Project of National Educational Science Planning(DFA090215)+1 种基金China Postdoctoral Science Foundation(20100481137)Funding of Jiangsu Innovation Program for Graduate Education(CXZZ11-0226)
文摘The construction method of background value is improved in the original multi-variable grey model (MGM(1,m)) from its source of construction errors. The MGM(1,m) with optimized background value is used to eliminate the random fluctuations or errors of the observational data of all variables, and the combined prediction model together with the multiple linear regression is established in order to improve the simulation and prediction accuracy of the combined model. Finally, a combined model of the MGM(1,2) with optimized background value and the binary linear regression is constructed by an example. The results show that the model has good effects for simulation and prediction.
基金the NKBRSF Project! G 1999043400 the CNSF Project! 49735180.
文摘Two land surface schemes, one the standard Biosphere / Atmosphere Transfer Scheme Version ie (BOZ) and the other B1Z based on B0Z and heterogeneously-treated by' combined approach' , were co 'pled to the meso-scale model MM4, respectively. Through the calculations of equations from the companion paper, parameters representing land surface heterogeneity and suitable for the coupling models were found out. Three cases were simulated for heavy rainfalls during 36 hours, and the sensitivity of short-term weather modeling to the land surface heterogeneity was tested. Through the analysis of the simulations of the three heavy rainfalls, it was demonstrated that BIZ, compared with BOZ, could more realistically reflect the features of the land surface heterogeneity, therefore could more realistically reproduce the circulation and precipitation amount in the heavy rainfall processes of the three cases. This shows that even short-term weather is sensitive to the land surface heterogeneity, which is more obvious with time passing, and whose influence is more pronounced in the lower layer and gradually extends to the middle and upper layer. Through the analysis of these simulations with BlZ, it is suggested that the bulk effect of smaller-scale fluxes (i.e., the momentum, water vapor and sensible heat fluxes) near the s ig nificantly-heterogeneous land surface is to change the larger-scale (i.e., meso-scale) circulation, and then to influence the development of the low-level jets and precipitation. And also, the complexity of the land-atmosphere interaction was shown in these simulations.
基金This work was sponsored by the National Natural Science Foundation of China
文摘-In order to avoid prescribing open boundary condition on the upstream side of the Hangzhou Bay, in numerical simulation of the tides and residual currents of the Bay, a 1-D model for the Qiantang River is connected to the 2-D model for the Hangzhou Bay. The harmonic constants of diurnal constituent [ (K1+O1)/2],semidiurnal constituent (M2) and shallow water constituent (M4) are obtained. The results produced by the combined model are in better agreement with the observed ones than those produced solely by the original 2-D model. The combined model gives much more reliable results for tide-induced residual water level and current.
基金Project supported by the Fundamental Research Foundations for the Central Universities (Grant No.2009B30514)
文摘Arbitrary topological curve network has no restriction in topology structure,so it has more powerful representing ability in defining complex surfaces.A complex surface modeling system is presented based on arbitrary topological curve network and the improved combined subdivision method,its functions including creating and editing curve network,and generating and modifying curve network's interpolated surface.This modeling system can be used to the process of products'concept design,and its applications is also significant to the development of subdivision method.
基金supported by the National Natural Science Foundation of China(Nos.52175079 and 12072091)the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments of China(No.6142905192512)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.N2103026)the Major Projects of AeroEngines and Gas Turbines of China(No.J2019-I-0008-0008)the China Postdoctoral Science Foundation(No.2020M680990)。
文摘This study analyzes and predicts the vibration characteristics of fiberreinforced composite sandwich(FRCS)cylindrical-spherical(CS)combined shells with hexagon honeycomb core(HHC)for the first time based on an analytical model developed,which makes good use of the advantage of the first-order shear deformation theory(FSDT),the multi-segment decomposition technique,the virtual spring technology,the Jacobi-Ritz approach,and the transfer function method.The equivalent material properties of HHC are firstly determined by the modified Gibson’s formula,and the related energy equations are derived for the HHC-FRCS-CS combined shells,from which the fundamental frequencies,the mode shapes,and the forced vibration responses are solved.The current model is verified through the discussion of convergence and comparative analysis with the associated published literature and finite element(FE)results.The effects of geometric parameters of HHC on the dynamic property of the structure are further investigated with the verified model.It reveals that the vibration suppression capability can be greatly enhanced by reducing the ratio of HHC thickness to total thickness and the ratio of wall thickness of honeycomb cell to overall radius,and by increasing the ratio of length of honeycomb cell to overall radius and honeycomb characteristic angle of HHC.
基金Project of National Key Basic Research Program(973 Program)(No.2013CB531705).
文摘Objective:To explore the feasibility of establishing the disease-syndrome combined animal model for immune thrombocytopenic purpura(ITP)without additional conditions.Methods:Three batches of data related to the ITP model mice obtained by replication at different time were analyzed,and whether the APS-injected model mice replicated through the passive immune modeling method could simulate the pathogenesis and clinical characteristics of human ITP was evaluated according to the differentiation criteria for diseasesyndrome combined model.Results:The APS-injected replicated ITP model mice possessed the following traits:(1)Compared with the normal group,the platelet count was significantly decreased,and coagulation time was significantly increased in the model group(P<.01).(2)Compared with the normal group,the medullary thrombocytogenous megakaryocytes were significantly decreased(P<.05,.01,.001).(3)The APS-injected sites and other parts of the model mice had spontaneous hemorrhage.(4)Behavioral changing signs were observed 1 week after the modeling(i.e.low activity,delayed activity,poor appetite,skin petechia/hemorrhage and spontaneous hemorrhage at the injected sites or other parts),and were getting more and more severe.Conclusion:According to the syndrome differentiation criteria for disease-syndrome combined model of ITP,the APS-injected animal model of ITP replicated through the passive immune modeling method without additional conditions possesses the characteristics of disease-syndrome combined model.It provides an ideal tool for the development of traditional Chinese medicine pharmacology experiment.
文摘BACKGROUND: Central adrenergic nerve and 5-serotonergic nerve can influence central cholinergic nerve on learning and memory and make easy for study; however, ginsenoside of stem and leaf (GSL) can improve functions of central adrenergic nerve; moreover, 5-serotonergic nerve and the combination with choline can produce synergistic effect and enhance learning and memory ability so as to improve learning and memory disorder of patients with Alzheimer disease (AD). OBJECTIVE : To observe the effects of GSL combining with choline on learning and memory of AD model rats DESIGN : Randomized grouping design and controlled animal study SETIING : Department of Pharmacology, Taishan Medical College MATERIALS : The experiment was carried out in the Pharmacological Department of Medical College of Jilin University from October 1996 to January 1997. Forty healthy male Wistar rats of clean grade were randomly divided into 5 groups, including sham-injury group, model group, GSL group, choline group and combination group, with 8 rats in each group. Main medications: GSL with the volume more than 92.8% was provided by Department of Chemistry, Norman Bethune Medical College of Jilin University. Panaxatriol, the main component, was detected with thin layer scanning technique and regarded as the index of GSL quality [(55±1)%, CV= 2%, n = 5]. Choline was provided by the Third Shanghai Laboratory Factory. METHODS : 150 nmol quinolinic acid was used to damage bilateral Meynert basal nuclei of adult rats so as to establish AD models. Rats in GSL, choline and combination groups were intragastric administrated with 400 mg/kg GSL, 200 mg/kg choline (20 mL/kg), and both respectively last for 17 days starting from two days before operation. Rats in sham-injury group and model group were perfused with the same volume of distilled water once in each morning for the same days. (1) Passive avoidance step-down test: Five minutes later, rats jumped up safe platform when they were shocked with 36 V alternating current. If rats jumped down from the platform and the feet touched railings, the response was wrong. Numbers of wrong response were recorded within 3 minutes, and then the test was redone after 24 hours. (2) Morris water-maze spatial localization task: Swimming from jumping-off to platform directly was regarded as right response. Additionally, 4 successively right responses were regarded as the standard. Each rat was trained 10 times a day with 120 s per time for 3 successive days. The interval was 30 s. Three days later, numbers of right response were recorded. The training times were increased to 30 for unlearned rats. (3) Measurement of activity of choline acetylase in cerebral cortex: Rats were sacrificed at 17 days after operation to obtain cerebral cortex to measure activity of choline acetylase with radiochemistry technique. (4) Synergistic effect: It was expressed as Q value: Q value = factual incorporative effect/anticipant incorporative effect; Q ≥ 1 was regarded as synergistic effect. Anticipant incorporative effect = (EA+EB-EA·EB), EA and EB were single timing effect, respectively in GSL group and choline group. E(step-down test and Morris water maze test) = (x in model group - factual value in medicine groups)/x in model group; E (activity of choline acetylase) = (factual value in medicine groups -xin model group)/xin model group. MAIN OUTCOME MEASURES : (1) Passive avoidance step-down test and Morris water-maze spatial localization task in the study of learning and memory; (2) activity of choline acetylase. RESULTS : All 40 rats were involved in the final analysis. (1) Passive avoidance response: At learning phase on first day and retesting phase on the next day, numbers of wrong responses within 3 minutes were more in model group than sham operation group, and there was significant difference [(5.88±1.46), (2.25±0.87) times; (2.63±1.06), (0.50±0.53) times; P 〈 0.01]; numbers of wrong responses within 3 minutes were less in combination group than model group, and there was significant difference [learning phase: (1.12±0.83), (5.88±1.46) times; retesting phase: (0.38±0.74), (2.63±1.06)times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and 1.59, respectively and it showed synergistic effect. Spatial localization task: Training times were more in model group than sham operation group, and there was significant difference [(2.9±2.5), (12.6±3.5) times; P 〈 0.01]. Training times were less in combination group than model group, and there was significant difference [(11.8±2.4), (27.9±2.5) times, P 〈 0.01]; moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.07 and it showed synergistic effect. (3) Activity of choline acetylase: Activity was lower in model group than sham operation group, and there was significant difference [(30.56±8.33), (61.11 ±8.33) nkat/g; P 〈 0.01]. Activity was higher in combination group than model group and there was significant difference [(50.00±8.33), (30.56±8.33) nkat/g, P 〈 0.01];moreover, effect was stronger than that in GSL group and choline group. The Q value was 1.5 and it showed synergistic effect. CONCLUSZON: GSL in combination with choline can synergically improve the disorder of learning and memory of AD model rats. Its mechanism may be involved in enhancing the function of central cholinergic system.
基金Shanxi Bethune Hospital Teaching Reform Project(2022JX06)Shanxi Provincial College Teaching Reform and Innovation Project(J20230467)。
文摘Objective:To study the application effect of short video combined with BOPPPS teaching mode in clinical anesthesia practice.Method:48 students assigned to clinical anesthesia in digestive endoscopy of Shanxi Bethune Hospital from July 1,2022 to April 1,2023 were selected as research objects.They were randomly divided into the control group(PowerPoint presentation teaching group)and the observation group(short video combined with BOPPPS teaching group),with 24 students in each group.After the internship,the students’theoretical and technical scores were tested,the effects of the two teaching modes were compared,and the students’satisfaction was investigated.Results:The test scores of students in the observation group were significantly better than those in the control group(P<0.05).The short video combined with BOPPPS teaching mode can significantly improve students’learning interest,operation skills,and memory(P<0.05).The students’satisfaction in the observation group was higher than that in the control group(P<0.05).Conclusion:In clinical practice,the application of short video combined with BOPPPS teaching mode has achieved great effect,which is worth further promotion and research.
文摘A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for solving this model is described.By using thismethod,the phase center of corrugated horn is discussed and calculated,and the variation of thephase center with distance and operating frequency is given.
文摘Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective.
基金Project supported by the National Basic Research Program of China (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 70631001,70701004 and 70501004)
文摘The combined bottleneck effect is investigated by modeling traffic systems with an on-ramp and a nearby bus stop in a two-lane cellular automaton model. Two cases, i.e. the bus stop locates in the downstream section of the on-ramp and the bus stop locates in the upstream section of the on-ramp, are considered separately. The upstream flux and downstream flux of the main road, as well as the on-ramp flux are analysed in detail, with respect to the entering probabilities and the distance between the on-ramp and the bus stop. It is found that the combination of the two bottlenecks causes the capacity to drop off, because the vehicles entering the main road from the on-ramp would interweave with the stopping (pulling-out) buses in the downstream (upstream) case. The traffic conflict in the former case is much heavier than that in the latter, causing the downstream main road to be utilized inefficiently. This suggests that the bus stop should be set in the upstream section of the on-ramp to enhance the capacity. The fluxes both on the main road and on the on-ramp vary with the distance between the two bottlenecks in both cases. However, the effects of distance disappear gradually at large distances. These findings might give some guidance to traffic optimization and management.
基金This work supported by Stress Project(KZ952-S1-420)Chinese Academy of Sciences+1 种基金863 Project(863-818-06-05)(863-818-Q-07).
文摘A combined numerical model of wind, wave, tide, and storm surges was built on the basis of the “wind field model in limited sea surface areas”. When used to forecast the sea surface wind, wave height and water level, it can describe them very well.