The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constan...The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constant-volume method.It was found by contrast that the ether group in solvents can promote the CO_2 absorption,but the hydroxyl group will inhibit the CO_2 absorption.Furthermore,the solubilities of CO_2 showed an upward trend with the increasing molecular lengths of absorbents.The experimental data were also correlated with a modified Patel–Teja equation of state(PT EOS)combined with the traditional van der Waals one-fluid mixing rules and the results showed a satisfactory agreement between the model and the experimental data.展开更多
The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium b...The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.展开更多
This paper reports an investigation into the characterisation of liquidaivapor electrolyte solutions at high pressure and high temperature. A procedure to enable calcuIations of methane, carbon dioxide and hydrogen su...This paper reports an investigation into the characterisation of liquidaivapor electrolyte solutions at high pressure and high temperature. A procedure to enable calcuIations of methane, carbon dioxide and hydrogen sulphide solubilities in brines (0-6 m.) for temperature from 25 to 350℃ and for pressures from 1 to 1800 bar is presented. The model is based on Helgeson, Kirkham and Flowers modified equations of state (HKF) and on the semi-empirical interaction model introduced by Pitzer. HKF modified equations of state are used to calculate the reference fugacity of gas species, and the Pitzer ionic interaction model is used to calculate the activity coefficient of dissolved species (i.e. ionic or neutral).The efficiency of the combination of the two models is confirmed by several comparisons with data in the literature.展开更多
Study on desorption and regeneration of simulated decarbonization solution using ammonia method for CO2 capture was car- fled out in order to understand the feature of regeneration of decarbonization solution. The mec...Study on desorption and regeneration of simulated decarbonization solution using ammonia method for CO2 capture was car- fled out in order to understand the feature of regeneration of decarbonization solution. The mechanisms about solution desorp- tion after decarbonization were introduced briefly. Under the atmospheric pressure and in the presence of nitrogen carrier gas, several effects related to desorption of simulated decarbonization solution were analyzed, such as temperature, solution con- centration, pH, loading capacity, etc. The results showed that the CO2 desorption percentage increased with the increases of temperature, solution concentration and loading capacity, but CO2 desorption percentage increased with the increasing of pH and then decreased.展开更多
Accurate modeling of the solubility behavior of CO_2 in the aqueous alkanolamine solutions is important to design and optimization of equipment and process. In this work, the thermodynamics of CO_2 in aqueous solution...Accurate modeling of the solubility behavior of CO_2 in the aqueous alkanolamine solutions is important to design and optimization of equipment and process. In this work, the thermodynamics of CO_2 in aqueous solution of N-methyldiethanolamine(MDEA) and piperazine(PZ) is studied by the electrolyte non-random two liquids(NRTL) model. The chemical equilibrium constants are calculated from the free Gibbs energy of formation, and the Henry's constants of CO_2 in MDEA and PZ are regressed to revise the value in the pure water. New experimental data from literatures are added to the regression process. Therefore, this model should provide a comprehensive thermodynamic representation for the quaternary system with broader ranges and more accurate predictions than previous work. Model results are compared to the experimental vapor-liquid equilibrium(VLE), speciation and heat of absorption data, which show that the model can predict the experimental data with reasonable accuracy.展开更多
基金supported by the National Outstanding Youth Scientists Foundation of China(51125018)National Natural Science Foundation of China(21006119)High-Tech Research and Development Program of China(863)(2009AA035000,2011AA060700)~~
基金the National Natural Science Foundation of China(21306088)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A01,Tsinghua University,China)the Priority Academic Program Development of Jiangsu Higher Education Institutions(China)
文摘The binary vapor–liquid equilibrium data of CO_2 in diethylene glycol(monomethyl,monoethyl,monobutyl,dimethyl,diethyl,dibutyl)ether were determined from 288.15 to 318.15 K at pressure up to 6 MPa based on the constant-volume method.It was found by contrast that the ether group in solvents can promote the CO_2 absorption,but the hydroxyl group will inhibit the CO_2 absorption.Furthermore,the solubilities of CO_2 showed an upward trend with the increasing molecular lengths of absorbents.The experimental data were also correlated with a modified Patel–Teja equation of state(PT EOS)combined with the traditional van der Waals one-fluid mixing rules and the results showed a satisfactory agreement between the model and the experimental data.
文摘The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.
文摘This paper reports an investigation into the characterisation of liquidaivapor electrolyte solutions at high pressure and high temperature. A procedure to enable calcuIations of methane, carbon dioxide and hydrogen sulphide solubilities in brines (0-6 m.) for temperature from 25 to 350℃ and for pressures from 1 to 1800 bar is presented. The model is based on Helgeson, Kirkham and Flowers modified equations of state (HKF) and on the semi-empirical interaction model introduced by Pitzer. HKF modified equations of state are used to calculate the reference fugacity of gas species, and the Pitzer ionic interaction model is used to calculate the activity coefficient of dissolved species (i.e. ionic or neutral).The efficiency of the combination of the two models is confirmed by several comparisons with data in the literature.
基金supported by the National Natural Science Foundation of China (Grant No. 21176064)
文摘Study on desorption and regeneration of simulated decarbonization solution using ammonia method for CO2 capture was car- fled out in order to understand the feature of regeneration of decarbonization solution. The mechanisms about solution desorp- tion after decarbonization were introduced briefly. Under the atmospheric pressure and in the presence of nitrogen carrier gas, several effects related to desorption of simulated decarbonization solution were analyzed, such as temperature, solution con- centration, pH, loading capacity, etc. The results showed that the CO2 desorption percentage increased with the increases of temperature, solution concentration and loading capacity, but CO2 desorption percentage increased with the increasing of pH and then decreased.
基金the National Natural Science Foundation of China (51376188)the National Basic Research Program of China (2011CB710701)
文摘Accurate modeling of the solubility behavior of CO_2 in the aqueous alkanolamine solutions is important to design and optimization of equipment and process. In this work, the thermodynamics of CO_2 in aqueous solution of N-methyldiethanolamine(MDEA) and piperazine(PZ) is studied by the electrolyte non-random two liquids(NRTL) model. The chemical equilibrium constants are calculated from the free Gibbs energy of formation, and the Henry's constants of CO_2 in MDEA and PZ are regressed to revise the value in the pure water. New experimental data from literatures are added to the regression process. Therefore, this model should provide a comprehensive thermodynamic representation for the quaternary system with broader ranges and more accurate predictions than previous work. Model results are compared to the experimental vapor-liquid equilibrium(VLE), speciation and heat of absorption data, which show that the model can predict the experimental data with reasonable accuracy.