期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多光谱数据融合和GANs算法的COD浓度预测 被引量:3
1
作者 陈颖 许扬眉 +5 位作者 邸远见 崔行宁 张杰 周鑫德 肖春艳 李少华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第1期188-193,共6页
水体中过高浓度的有机污染物含量危害巨大,不仅会造成严重的环境污染,而且会危害人类身体健康。化学需氧量(COD)表征了水体中有机污染物的污染程度。提出了一种将紫外(UV)光谱和近红外(NIR)光谱进行多光谱数据级融合(LLDF)和特征级融合(... 水体中过高浓度的有机污染物含量危害巨大,不仅会造成严重的环境污染,而且会危害人类身体健康。化学需氧量(COD)表征了水体中有机污染物的污染程度。提出了一种将紫外(UV)光谱和近红外(NIR)光谱进行多光谱数据级融合(LLDF)和特征级融合(MLDF),进而构建基于生成对抗式网络(GANs)算法的COD浓度定量预测模型。首先按照一定的浓度梯度配制COD标准液样本,分别采集标准液的UV光谱(190~310 nm)和NIR光谱(830~2100 nm),对获取到的UV和NIR光谱数据进行一阶导数和Savitzky-Golay(S-G)平滑的预处理,消除基线漂移和干扰噪声;基于预处理过的光谱,直接进行数据级和特征级的数据融合,结合G ANs算法搭建COD浓度预测模型。并使用评价参数相关系数的平方(R^2)、预测值与真实浓度值的均方根误差(RMSEP)和预测偏差来对模型进行评价。结果表明,不论是特征级融合模型还是数据级融合模型都不够理想。分析原因可知,由于UV和NIR波段数据量不均衡,导致NIR波段掩盖掉了UV光谱的模型贡献度,让光谱融合失去意义。为了避免融合失败,拟采用归一化的方法处理多光谱数据,并讨论了标准归一化(SNV)、最大最小归一化(MMN)和矢量归一化(VN)对建模的影响。将经过归一化后的UV和NIR光谱数据再次进行融合,分别作为GANs模型的输入X,将真实测量COD值作为输出值Y,建立不同归一化方法处理后的COD浓度预测模型。建模结果显示,采用不同归一化方法对多光谱数据融合模型的影响较大,不论是数据级融合模型还是特征级融合模型的预测精度较未归一化之前有明显的提升,其中采用最大最小归一化的预测模型效果提升最为明显。与单一谱源的全波长UV波段的GANs预测模型、全波长NIR波段的GANs预测模型进行对比来验证多光谱数据融合GANs预测模型的精度,结果表明:基于UV和NIR光谱的特征级光谱融合模型的R 2为0.9947,RMSEP为0.976,比数据级融合的预测模型误差降低了52.9%,预测回收率为98.4%~103.1%,远好于其他几组,模型的泛化能力更强,预测精度也更高。与单一谱源的预测模型相比,多光谱数据融合能反应更多的水体样品的化学信息,更加全面揭示水体的污染物程度,从不同的层面上反应水体中污染物的差异,为在线监测水体中COD浓度提供一定的技术支持。 展开更多
关键词 紫外光谱 近红外光谱 数据融合 GANs模型 cod浓度预测
下载PDF
基于BiPLS结合SiPLS的组合权值COD浓度预测模型 被引量:4
2
作者 陈颖 邸远见 +4 位作者 唐心亮 崔行宁 高新贝 曹景刚 李少华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第7期2176-2181,共6页
水体中过高浓度的有机物含量危害巨大,不仅会造成严重的环境污染,而且危害人类身体健康,传统化学法检测水体化学需氧量(COD)的步骤繁琐且时效性差,不利于水体中COD的快速定量检测。针对这些问题,提出了一种将紫外光谱与组合权值模型相... 水体中过高浓度的有机物含量危害巨大,不仅会造成严重的环境污染,而且危害人类身体健康,传统化学法检测水体化学需氧量(COD)的步骤繁琐且时效性差,不利于水体中COD的快速定量检测。针对这些问题,提出了一种将紫外光谱与组合权值模型相结合的快速定量检测COD方法,该组合权值模型是基于反向区间偏最小二乘法(BiPLS)结合组合区间偏最小二乘法(SiPLS)算法对紫外光谱的特征子区间筛选组合,然后依据特征子区间的权值建立的预测模型。首先按照一定的浓度梯度配制45份COD标准液样本,通过实验获取标准液的紫外光谱数据;对获取到的COD紫外光谱数据做一阶导数和S-G滤波(Savitzky-Golay)的预处理,消除基线漂移和环境干扰噪声;应用SPXY(Sample set partitioning based on jiont X-Y)算法将实验样本数据组划分成校正集和预测集。然后基于BiPLS算法对全光谱区间进行波长筛选,在BiPLS筛选过程中,目标区间的划分数量会对建模产生较大影响,于是对子区间划分数量进行优化,把子区间分成15~25个,在不同区间数下都进行偏最小二乘(PLS)建模,通过交互验证均方根误差(RMSECV)来筛选最优子区间数,得到区间数为18时,模型效果最佳。从18个波长区间筛选出了6个特征波长子区间,入选的子区间为2,1,3,11,7和6,对应波长为234~240,262~268,269~275,290~296,297~303和304~310nm,这6个特征波长区间涵盖了大量的光谱信息,对最终预测模型的贡献度大;接下来通过SiPLS算法对这6个初选区间进行进一步的筛选组合,采用不同的组合数构建不同特征区间上的PLS模型,在相同组合数下,筛选出一个区间组合数最优的结果,对比不同组合数下预测模型的误差与相关性,将6个区间筛选组合为3个特征波长区间,分别为234~240,262~275和290~310nm,这三个特征区间最佳因子数分别为4,4和3。对传统SiPLS的特征区间组合方法进行改进,基于权值的大小来对这3个特征区间进行线性组合,代替过去特征区间直接组合的方法。通过权值公式计算出这3个特征区间的权重大小分别为0.509,0.318和0.173,最终建立线性组合权值COD浓度预测模型。为了验证组合权重预测模型的精度,另外建立了全波长范围内的PLS预测模型、单个特征波长区间的PLS预测模型、直接组合特征波长区间的PLS模型,并使用评价参数相关系数的平方(R2)、预测值与真实浓度值的均方根误差(RMSEP)和预测回收率(T)来对模型评价。验证结果表明,相比其他预测模型,组合权值模型相关系数的平方达到了0.9997,明显优于直接组合特征区间建模的0.9680,预测均方根误差为0.532,比直接组合特征区间的预测模型误差降低了29.3%,预测回收率为96.4%~103.1%,显著地提高了预测精度。该方法简单可行,不会产生二次污染,可为在线监测水体中COD浓度提供一定的技术支持。 展开更多
关键词 紫外光谱 区间筛选组合 区间权值 cod浓度预测模型
下载PDF
某大型生活垃圾填埋场渗沥液COD浓度预测模型研究
3
作者 黄皇 《环境卫生工程》 2016年第6期22-25,29,共5页
针对某大型生活垃圾填埋场运行模式和水质变化规律,将各阶段渗沥液的来源和水质特点纳入模型计算中,对以往的填埋场渗沥液有机物浓度模型做出修正。在该填埋场运行1 a的现场渗沥液水质数据与各变量之间的相关性分析的基础上,建立了COD... 针对某大型生活垃圾填埋场运行模式和水质变化规律,将各阶段渗沥液的来源和水质特点纳入模型计算中,对以往的填埋场渗沥液有机物浓度模型做出修正。在该填埋场运行1 a的现场渗沥液水质数据与各变量之间的相关性分析的基础上,建立了COD浓度预测模型,拟合得到各项模型参数,相关系数接近0.9,表明该模型能有效预测大型垃圾填埋场初期运行过程中渗沥液COD浓度的变化规律。该填埋场渗沥液初期浓度接近60 000 mg/L,经历逐步上升、快速下降和慢速下降3个阶段,峰值可达80 000 mg/L,在1 a内快速下降至40 000 mg/L后慢速下降。 展开更多
关键词 生活垃圾填埋场 渗沥液 cod浓度预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部