Multimodal freight transportation emerges as the go-to strategy for cost-effectively and sustainably moving goods over long distances. In a multimodal freight system, where a single contract includes various transport...Multimodal freight transportation emerges as the go-to strategy for cost-effectively and sustainably moving goods over long distances. In a multimodal freight system, where a single contract includes various transportation methods, businesses aiming for economic success must make well-informed decisions about which modes of transport to use. These decisions prioritize secure deliveries, competitive cost advantages, and the minimization of environmental footprints associated with transportation-related pollution. Within the dynamic landscape of logistics innovation, various multicriteria decision-making (MCDM) approaches empower businesses to evaluate freight transport options thoroughly. In this study, we utilize a case study to demonstrate the application of the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) algorithm for MCDM decision-making in freight mode selection. We further enhance the TOPSIS framework by integrating the entropy weight coefficient method. This enhancement aids in assigning precise weights to each criterion involved in mode selection, leading to a more reliable decision-making process. The proposed model provides cost-effective and timely deliveries, minimizing environmental footprint and meeting consumers’ needs. Our findings reveal that freight carbon footprint is the primary concern, followed by freight cost, time sensitivity, and service reliability. The study identifies the combination of Rail/Truck as the ideal mode of transport and containers in flat cars (COFC) as the next best option for the selected case. The proposed algorithm, incorporating the enhanced TOPSIS framework, benefits companies navigating the complexities of multimodal transport. It empowers making more strategic and informed transportation decisions. This demonstration will be increasingly valuable as companies navigate the ever-growing trade within the global supply chains.展开更多
文摘Multimodal freight transportation emerges as the go-to strategy for cost-effectively and sustainably moving goods over long distances. In a multimodal freight system, where a single contract includes various transportation methods, businesses aiming for economic success must make well-informed decisions about which modes of transport to use. These decisions prioritize secure deliveries, competitive cost advantages, and the minimization of environmental footprints associated with transportation-related pollution. Within the dynamic landscape of logistics innovation, various multicriteria decision-making (MCDM) approaches empower businesses to evaluate freight transport options thoroughly. In this study, we utilize a case study to demonstrate the application of the Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS) algorithm for MCDM decision-making in freight mode selection. We further enhance the TOPSIS framework by integrating the entropy weight coefficient method. This enhancement aids in assigning precise weights to each criterion involved in mode selection, leading to a more reliable decision-making process. The proposed model provides cost-effective and timely deliveries, minimizing environmental footprint and meeting consumers’ needs. Our findings reveal that freight carbon footprint is the primary concern, followed by freight cost, time sensitivity, and service reliability. The study identifies the combination of Rail/Truck as the ideal mode of transport and containers in flat cars (COFC) as the next best option for the selected case. The proposed algorithm, incorporating the enhanced TOPSIS framework, benefits companies navigating the complexities of multimodal transport. It empowers making more strategic and informed transportation decisions. This demonstration will be increasingly valuable as companies navigate the ever-growing trade within the global supply chains.