期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
An Integrated Framework for Geothermal Energy Storage with CO_(2)Sequestration and Utilization 被引量:1
1
作者 Yueliang Liu Ting Hu +7 位作者 Zhenhua Rui Zheng Zhang Kai Du Tao Yang Birol Dindoruk Erling Halfdan Stenby Farshid Torabi Andrey Afanasyev 《Engineering》 SCIE EI CAS CSCD 2023年第11期121-130,共10页
Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage d... Subsurface geothermal energy storage has greater potential than other energy storage strategies in terms of capacity scale and time duration.Carbon dioxide(CO_(2))is regarded as a potential medium for energy storage due to its superior thermal properties.Moreover,the use of CO_(2)plumes for geothermal energy storage mitigates the greenhouse effect by storing CO_(2)in geological bodies.In this work,an integrated framework is proposed for synergistic geothermal energy storage and CO_(2)sequestration and utilization.Within this framework,CO_(2)is first injected into geothermal layers for energy accumulation.The resultant high-energy CO_(2)is then introduced into a target oil reservoir for CO_(2)utilization and geothermal energy storage.As a result,CO_(2)is sequestrated in the geological oil reservoir body.The results show that,as high-energy CO_(2)is injected,the average temperature of the whole target reservoir is greatly increased.With the assistance of geothermal energy,the geological utilization efficiency of CO_(2)is higher,resulting in a 10.1%increase in oil displacement efficiency.According to a storage-potential assessment of the simulated CO_(2)site,110 years after the CO_(2)injection,the utilization efficiency of the geological body will be as high as 91.2%,and the final injection quantity of the CO_(2)in the site will be as high as 9.529×10^(8)t.After 1000 years sequestration,the supercritical phase dominates in CO_(2)sequestration,followed by the liquid phase and then the mineralized phase.In addition,CO_(2)sequestration accounting for dissolution trapping increases significantly due to the presence of residual oil.More importantly,CO_(2)exhibits excellent performance in storing geothermal energy on a large scale;for example,the total energy stored in the studied geological body can provide the yearly energy supply for over 3.5×10^(7) normal households.Application of this integrated approach holds great significance for large-scale geothermal energy storage and the achievement of carbon neutrality. 展开更多
关键词 Geothermal energy storage co_(2)sequestration Carbon neutrality LARGE-SCALE co_(2)utilization
下载PDF
Effects of CH_(4)/CO_(2) multi-component gas on components and properties of tight oil during CO_(2) utilization and storage: Physical experiment and composition numerical simulation
2
作者 Zhi-Hao Jia Ren-Yi Cao +5 位作者 Bin-Yu Wang Lin-Song Cheng Jin-Chong Zhou Bao-Biao Pu Fu-Guo Yin Ming Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3478-3487,共10页
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe... An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff. 展开更多
关键词 Multi-component gas Properties and components core displacement experiment Nano-confinement numerical simulation co_(2)utilization and storage
下载PDF
Design and synthesis of thermally stable single atom catalysts for thermochemical CO_(2) reduction 被引量:1
3
作者 Eswaravara Prasadarao Komarala Ayesha A.Alkhoori +2 位作者 Xiaolong Zhang Hui-Ming Cheng Kyriaki Polychronopoulou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期246-262,I0006,共18页
The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for... The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for converting CO_(2)into valuable chemicals and fuels.These conversions have the potential to establish a closed artificial carbon cycle and provide an alternative resource to depleting fossil fuels.Among the various conversion routes,thermochemical CO_(2)reduction stands out as a promising candidate for industrialization.Within the realm of heterogeneous catalysis,single atom catalysts(SACs)have garnered significant attention.The utilization of SACs offers tremendous potential for enhancing catalytic performance.To achieve optimal activity and selectivity of SACs in CO_(2)thermochemical reduction reactions,a comprehensive understanding of key factors such as single atom metal-support interactions,chemical coordination,and accessibility of active sites is crucial.Despite extensive research in this field,the atomic-scale reaction mechanisms in different chemical environments remain largely unexplored.While SACs have been found successful applications in electrochemical and photochemical CO_(2)reduction reactions,their implementation in thermochemical CO_(2)reduction encounters challenges due to the sintering and/or agglomeration effects that occur at elevated temperatures.In this review,we present a unique approach that combines theoretical understanding with experimental strategies to guide researchers in the design of controlled and thermally stable SACs.By elucidating the underlying principles,we aim to enable the creation of SACs that exhibit stable and efficient catalytic activity for thermochemical CO_(2)reduction reactions.Subsequently,we provide a comprehensive overview of recent literature on noble metal-and transition metal-based SACs for thermochemical CO_(2)reduction.The current review is focused on certain CO_(2)-derived products involving one step reduction only for simplicity and for better understanding the SACs enhancement mechanism.We emphasize various synthesis methods employed and highlight the catalytic activity of these SACs.Finally,we delve into the perspectives and challenges associated with SACs in the context of thermochemical CO_(2)reduction reactions,providing valuable insights for future research endeavor.Through this review,we aim to contribute to the advancement of SACs in the field of thermochemical CO_(2)reduction,shedding light on their potential as effective catalysts and addressing the challenges that need to be overcome for their successful implementation as paradigm shift in catalysis. 展开更多
关键词 co_(2) utilization co_(2) conversion SACs Added-value products Thermochemical catalysis
下载PDF
Promotion effects of alkali metals on iron molybdate catalysts for CO_(2)catalytic hydrogenation
4
作者 Yong Zhou Aliou Sadia Traore +9 位作者 Deizi V.Peron Alan J.Barrios Sergei A.Chernyak Massimo Corda Olga V.Safonova Achim Iulian Dugulan Ovidiu Ersen Mirella Virginie Vitaly V.Ordomsky Andrei Y.Khodakov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期291-300,I0009,共11页
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly... CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity. 展开更多
关键词 co_(2)utilization Iron molybdate catalysts PROMOTION Alkali metals Light olefins In-situ characterization
下载PDF
CO_(2) gas stripped off membranous residual oil from pore surfaces: Effects of temperature, pressure and wettability
5
作者 Tao Yu Haixiang Hu +3 位作者 Qi Li Yongsheng Tan Liang Xu Xiaomin Cao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3209-3220,共12页
The threshold values of CO_(2) gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure a... The threshold values of CO_(2) gas stripped off membranous residual oil from the pore walls are not clear under different temperatures, pressures and wettability conditions. The extent to which temperature, pressure and wettability influence CO_(2) flooding for enhancing the recovery of residual oil in membranous formations also remains uncertain. Therefore, further quantitative characterization is entailed. In this study, the molecular dynamics method was employed to explore CO_(2) flooding under different temperatures, pressures and wettability conditions, aiming to enhance the production of membranous residual oil. The results reveal that the interaction energy between CO_(2), decane molecules and pore walls exhibits a decrease with increasing temperature and an increase with increasing pressure, respectively, in distinct wettability scenarios. When the temperature was at or below 363 K and the pressure was not lower than 40 MPa, CO_(2) gas could detach the membranous residual oil from the pore walls in the water-wet systems. When the temperature was equal to 363 K and the pressure remained under 40 MPa, or the temperature surpassed 363 K, CO_(2) gas failed to detach the membranous residual oil from the pore walls in the water-wet systems. For the mixed-wet and oil-wet systems, CO_(2) molecules could not detach the membranous residual oil from the pore walls. The hierarchy of influence regarding temperature, pressure and wettability on the competitive adsorption capacity of CO_(2) and decane molecules on the pore walls emerged as follows: wettability > temperature > pressure. The findings of this study offer valuable insights into the application of CO_(2) gas flooding for the exploitation of membranous residual oil on pore walls. 展开更多
关键词 Molecular dynamics simulation co_(2)flooding WETTABILITY Interaction energy Residual oil co_(2)utilization co_(2)capture utilization and storage(CCUS)
下载PDF
Recent advances in paired electrolysis coupling CO_(2) reduction with alternative oxidation reactions
6
作者 Deng Li Jiangfan Yang +2 位作者 Juhong Lian Junqing Yan Shengzhong(Frank) Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期406-419,I0011,共15页
Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the... Electrocatalytic CO_(2) reduction reaction(CO_(2)RR)holds great promise in green energy conversion and storage.However,for current CO_(2) electrolyzers that rely on the oxygen evolution reaction,a large portion of the input energy is"wasted"at the anode due to the high overpotential requirement and the recovery of low-value oxygen.To make efficient use of the electricity during electrolysis,coupling CO_(2)RR with anodic alternatives that have low energy demands and/or profitable returns with high-value products is then promising.Herein,we review the latest advances in paired systems for simultaneous CO_(2) reduction and anode valorization.We start with the cases integrating CO_(2)RR with concurrent alternative oxidation,such as inorganic oxidation using chloride,sulfide,ammonia and urea,and organic oxidation using alcohols,aldehydes and primary amines.The paired systems that couple CO_(2)RR with on-site oxidative upgrading of CO_(2)-reduced chemicals are also introduced.The coupling mechanism,electrochemical performance and economic viability of these co-electrolysis systems are discussed.Thereby,we then point out the mismatch issues between the cathodic and anodic reactions regrading catalyst ability,electrolyte solution and reactant supply that will challenge the applications of these paired electrolysis systems.Opportunities to address these issues are further proposed,providing some guidance for future research. 展开更多
关键词 ELECTROLYSIS coupling Reaction co_(2)utilization co-Valorization
下载PDF
Assessment of the Greenhouse Gas Footprint and Environmental Impact of CO_(2)and O_(2)in situ Uranium Leaching
7
作者 YANG Yun ZUO Jinsong +5 位作者 QIU Wenjie WU Jichun QUE Weimin ZHOU Genmao LIU Zhengbang WU Jianfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期986-994,共9页
Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carb... Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes. 展开更多
关键词 in situ leaching of uranium reactive transport modeling geochemical process co_(2)utilization
下载PDF
Engineering heterogenous catalysts for chemical CO_(2) utilization:Lessons from thermal catalysis and advantages of yolk@shell structured nanoreactors 被引量:2
8
作者 Cameron Alexander Hurd Price Tomas Ramirez Reina Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期304-324,I0008,共22页
The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this ... The development of catalytic materials for the recycling CO_(2) through a myriad of available processes is an attractive field,especially given the current climate change.While there is increasing publication in this field,the reported catalysts rarely deviate from the traditionally supported metal nanoparticle morphology,with the most simplistic method of enhancement being the addition of more metals to an already complex composition.Encapsulated catalysts,especially yolk@shell catalysts with hollow voids,offer answers to the most prominent issues faced by this field,coking and sintering,and further potential for more advanced phenomena,for example,the confinement effect,to promote selectivity or offer greater protection against coking and sintering.This work serves to demonstrate the current position of catalyst development in the fields of thermal CO_(2) reforming and hydrogenation,summarizing the most recent work available and most common metals used for these reactions,and how yolk@shell catalysts can offer superior performance and survivability in thermal CO_(2) reforming and hydrogenation to the more traditional structure.Furthermore,this work will briefly demonstrate the bespoke nature and highly variable yolk@shell structure.Moreover,this review aims to illuminate the spatial confinement effect and how it enhances yolk@shell structured nanoreactors is presented. 展开更多
关键词 Yolk@shell co_(2)utilization REFORMING HYDROGENATION confinement effect
下载PDF
Recent advances in catalytic systems for CO_(2) conversion to substitute natural gas(SNG):Perspective and challenges 被引量:6
9
作者 I.Hussain A.A.Jalil +1 位作者 N.S.Hassan M.Y.S.Hamid 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期377-407,I0008,共32页
It has been well established that carbon dioxide(CO_(2))is one of the main greenhouse gasses and a leading driver of climate change.The chemical conversion of CO_(2) to substitute natural gas(SNG)in the presence of re... It has been well established that carbon dioxide(CO_(2))is one of the main greenhouse gasses and a leading driver of climate change.The chemical conversion of CO_(2) to substitute natural gas(SNG)in the presence of renewable hydrogen is one of the most promising solutions by a well-known process called CO_(2) methanation.There have been comprehensive efforts in developing effective and efficient CO_(2) methanation catalytic systems.However,the choice of competitive and stable catalysts is still a monumental obstruction and a great challenge towards the commercialization and industrialization of CO_(2) methanation.It is necessary to emphasize the critical understandings of intrinsic and extrinsic interactions of catalyst components(active metal,support,promoter,etc.)for enhanced catalytic performance and stability during CO_(2) methanation.This study reviews the up-to-date developments on CO_(2) methanation catalysts and the optimal synergistic relationship between active metals,support,and promoters during the catalytic activity.The existing catalysts and their novel properties for enhanced CO_(2) methanation were elucidated using the state-of-the-art experimental and theoretical techniques.The selection of an appropriate synthesis method,catalytic activity for CO_(2) methanation,deactivation of the catalysts,and reaction mechanisms studies,have been explicitly compared and explained.Therefore,future efforts should be directed towards the sustainable developments of catalytic configurations for successful industrial applications of CO_(2) utilization to SNG using CO_(2) methanation. 展开更多
关键词 co_(2)utilization co_(2)methanation SNG Catalytic systems DEACTIVATION Mechanism
下载PDF
Effect of proppant pumping schedule on the proppant placement for supercritical CO_(2) fracturing 被引量:1
10
作者 Yong Zheng Hai-Zhu Wang +4 位作者 Ying-Jie Li Gang-Hua Tian Bing Yang Cheng-Ming Zhao Ming-Sheng Liu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期629-638,共10页
Supercritical CO_(2)fracturing is a potential waterless fracturing technique which shows great merits in eliminating reservoir damage,improving shale gas recovery and storing CO_(2)underground.Deep insight into the pr... Supercritical CO_(2)fracturing is a potential waterless fracturing technique which shows great merits in eliminating reservoir damage,improving shale gas recovery and storing CO_(2)underground.Deep insight into the proppant-transport behavior of CO_(2)is required to better apply this technique in the engineering field.In the present paper,we adopted a coupled Computational Fluid Dynamics and Discrete Element Method(CFD-DEM)approach to simulate the proppant transport in a fracking fracture with multiple perforation tunnels.Previous experiments were first simulated to benchmark the CFD-EDM approach,and then various pumping schedules and injection parameters(injection location,multi-concentration injection order,multi-density injection order and injection temperature)were investigated to determine the placement characteristics of proppant.Results indicate that the swirling vortex below the injection tunnels dominates the proppant diffusion in the fracture.The velocity of fluid flow across the proppant bank surface in multi-concentration injection shows a positive correlation with the proppant concentration.Injecting high-density proppant first can promote the transportation of low-density proppant injected later in the fracture to a certain extent.Decreasing the initial injection temperature of supercritical CO_(2)slurry helps enhance the particle-driving effect of fluid and improve the performance of supercritical CO_(2)in carrying proppant. 展开更多
关键词 Supercritical co_(2)fracturing Proppant placement CFD-DEM Unconventional natural gas co_(2)utilization
下载PDF
Development of CO_(2) capture and utilization technology in steelmaking plant
11
作者 Wen-liang Dong Guo-hui Ding +5 位作者 An-jun Xu Ning Hao Chen-xi Ji Li-peng Ji Hai-bo Li Rong Zhu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第11期2210-2218,共9页
The performance of a recycling process for CO_(2) capture and utilization of exhaust gas in the steelmaking plant was reported.A facility capable of capturing CO_(2) at 3200 m^(3)/h was established in the steelmaking ... The performance of a recycling process for CO_(2) capture and utilization of exhaust gas in the steelmaking plant was reported.A facility capable of capturing CO_(2) at 3200 m^(3)/h was established in the steelmaking plant,resulting in the CO_(2) production of 50,000 t/a.The CO_(2) concentration of the exhaust gas from the lime kiln increased from 25.0 to 99.8 vol.%using the comprehensive method of the pressure swing adsorption and cryogenic separation.The captured and purified CO_(2) was successfully applied in the converter process by the top blowing and bottom blowing.The utilization of CO_(2) was 3.5 m^(3)/t through these two modes.After optimizing parameters of CO_(2)-O_(2) mixed top blowing,the value of[C]×[O]and the content of TFe in slag were reduced by 1.33×10-4 and 1.27%,respectively,and the dephosphorization rate of the molten steel increased by 2.31%.For the CO_(2) bottom blowing,the[N]content in the molten steel was significantly reduced by 5.7×10^(-6). 展开更多
关键词 Lime kiln exhaust gas co_(2)capture co_(2)utilization co_(2)-O_(2)mixed top blowing co_(2)bottom blowing coNVERTER
原文传递
Opportunities and challenges in CO_(2) utilization 被引量:9
12
作者 Sriram Valluri Victor Claremboux Surendra Kawatra 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第3期322-344,共23页
CO_(2) utilizations are essential to curbing the greenhouse gas effect and managing the environmental pollutant in an energy-efficient and economically-sound manner.This paper seeks to critically analyze these technol... CO_(2) utilizations are essential to curbing the greenhouse gas effect and managing the environmental pollutant in an energy-efficient and economically-sound manner.This paper seeks to critically analyze these technologies in the context of each other and highlight the most important utilization avenues available thus far.This review will introduce and analyze each major pathway,and discuss the overall applicability,potential extent,and major limitations of each of these pathways to utilizing CO_(2).This will include the analysis of some previously underreported utilization avenues,including CO_(2) utilization in industrial filtration and the processing of raw industrial materials such as iron and alumina.The core theme of this paper is to seek to treat CO_(2) as a commodity instead of a liability. 展开更多
关键词 co_(2)utilization Clean energy Supercritical co_(2) Electrochemical reduction
原文传递
Efficient photothermal CO_(2) methanation over Ni Fe alloy nanoparticles with enhanced localized surface plasmon resonance effect
13
作者 Jiarong Li Qi Xu +5 位作者 Yaoyao Han Zhiyong Guo Liangqun Zhao Kang Cheng Qinghong Zhang Ye Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3518-3524,共7页
The methanation of CO_(2) using green hydrogen not only consumes CO_(2) as a carbon resource but also stores H_(2) with high density.However,the activation of CO_(2) molecules under mild conditions is challenging due ... The methanation of CO_(2) using green hydrogen not only consumes CO_(2) as a carbon resource but also stores H_(2) with high density.However,the activation of CO_(2) molecules under mild conditions is challenging due to their inert nature.Herein,we report an efficient photothermal catalytic system using light irradiation which realizes the complete conversion of CO_(2) to methane without external heating.Over optimum bimetallic Ni Fe nanoparticles(NPs)with a Ni/Fe atomic ratio of 7,the CO_(2) conversion can reach up to 98%with a CH_(4) selectivity of 99%,and no catalyst deactivation was observed for more than 100 h,outperforming the reported catalysts.The catalytic performance is strongly dependent on the structure promoters,light absorption efficiency,Ni Fe particle sizes,and Ni/Fe ratio.The Ni Fe alloy NPs with an average size of~21 nm dispersed on alumina nanosheets are evidenced to enhance the localized surface plasmon resonance(LSPR)effect,thus efficiently triggering the CO_(2) methanation.This work emphasizes and clarifies the important role of LSPR in CO_(2) hydrogenation,which may benefit the rational utilization of CO_(2) using solar power. 展开更多
关键词 photothermal catalysis BIMETALLIC LSPR effect co_(2)utilization hydrogen storage
原文传递
Facile Synthesis of Polycarbonate Diol via Copolymerization of CO_(2) and Cyclohexene Oxide Catalysed by a Combination of One-Component Phosphonium Borane Lewis Pair and Water
14
作者 Xiao-Wu Wang Ji-Wen Hui +2 位作者 Yu-Tao Li Yan-Ru Gu Zhi-Bo Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第5期735-744,I0009,共11页
Well-defined polycarbonate diol was successfully synthesized through a strategy using a combination of organocatalyst and water.Such strategy was less developed in organocatalyzed polymerization and frequently regarde... Well-defined polycarbonate diol was successfully synthesized through a strategy using a combination of organocatalyst and water.Such strategy was less developed in organocatalyzed polymerization and frequently regarded as side reactions.Herein,one-component phosphonium borane Lewis pairs PB1-PB8 were successfully applied in the copolymerization of CO_(2) and cyclohexene oxide(CHO)to generate poly(CHO-alt-CO_(2))carbonate(PCHC).Parameters of linker length and counter anion effects on the catalyst activity were investigated.It was found that Lewis pair PB3 served as a dual initiator and catalyst in the copolymerization of CHO and CO_(2) with or without the presence of water.In contrast,Lewis pair PB8 can serve as a true catalyst for the preparation of well-definedα,ω-hydroxyl PCHC diols.This was achieved by introducing a labile CF3COO group as counter anion through anion exchange reaction while water molecules acted as chain transfer agents.The function of trifluoroacetate group in the polymerization process was investigated in detail and possible mechanism was proposed.Upon changing the amount of water and catalyst loading,PCHC diols with varied molecular weight(1.5 kg/mol to 7.5 kg/mol),low dispersities(D<1.2)and carbonate content(>99%)could be easily obtained.The low molecular weight PCHC diol was used as a bifunctional macroinitiator for the ring-opening polymerization of L-lactide(LLA)to afford ABA triblock copolymer in one-pot synthesis. 展开更多
关键词 Polycarbonate Phosphonium borane Lewis pair co_(2)utilization Organocatalysis Ring-opening polymerization
原文传递
Promoting Effect of ZnO on the Catalytic Performance of CoZSM-5 for CO_(2)-Assisted Dehydrogenation of Ethane
15
作者 HE Huan ZOU Zhengxi +2 位作者 HUA Weiming YUE Yinghong GAO Zi 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2023年第6期1064-1069,共6页
Aseries of ZnO-modified cobaltous ion exchanged ZSM-5 catalysts is prepared using incipient wetness impregnation and characterized by X-ray diffraction(XRD),N2 adsorption,transmission electron microscopy(TEM),UV-Vis d... Aseries of ZnO-modified cobaltous ion exchanged ZSM-5 catalysts is prepared using incipient wetness impregnation and characterized by X-ray diffraction(XRD),N2 adsorption,transmission electron microscopy(TEM),UV-Vis diffuse reflectance spectroscopy(DR UV-Vis),X-ray photoelectron spectroscopy(XPS),pyridine-adsorbed Fourier transform infrared(Py-IR)and Raman.Their catalytic performance towards CO_(2)-assisted dehydrogenation of ethane to ethylene has been evaluated.The addition of ZnO onto CoZSM-5 obviously improved the yield of ethylene as well as the conversion of CO_(2).The promoting effect is attributed to the good activity of ZnO for the reverse water gas shift(RWGS)reaction,which enhances the coupling between RWGS and ethane dehydrogenation. 展开更多
关键词 Ethane dehydrogenation co_(2)utilization ZNO coZSM-5 coupling
原文传递
Zwitterionic cellular polymer enabled reductive fixation of CO_(2) for N-methylation of amines
16
作者 Wenfeng Zhao Hu Li +3 位作者 Hang Cong Hongguo Wu Ping Zhu Song Yang 《Green Synthesis and Catalysis》 2023年第4期342-349,共8页
Using heterogeneous catalysts to promote the construction of the C–N bond between amines and CO_(2) under mild conditions is a challenge yet.Herein,we synthesized a novel zwitterionic polymer(PDDC)with a cellular str... Using heterogeneous catalysts to promote the construction of the C–N bond between amines and CO_(2) under mild conditions is a challenge yet.Herein,we synthesized a novel zwitterionic polymer(PDDC)with a cellular structure via self-complexation of copolymer bearing both quaternary ammonium cation and carboxylate anion.PDDC was employed as a recyclable catalyst for N-methylation of atmospheric CO_(2) and various amines with hydrosilane as a reductant,affording more than 17 N-methylamines in good to excellent yields(up to 99%)under mild conditions.The behavior of PDDC in the reaction medium was disclosed by using a dynamic light scattering study,revealing that the decreased hydraulic radius of particle size contributes to exposing more active sites and increasing reaction activity.Utilizing a series of designed experiments and density functional theory calculations uncovered the crucial role of the prepared zwitterionic polymer during the reaction procedure of CO_(2) conversion. 展开更多
关键词 co_(2)utilization Porous polymer Zwitterionic ion N-METHYLATION Heterogeneous catalysis
下载PDF
CO_(2) utilization: Developments in conversion processes 被引量:13
17
作者 Erdogan Alper Ozge Yuksel 《Petroleum》 2017年第1期109-126,共18页
Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for ... Carbon dioxide capture,utilization and storage(CCUS)eincluding conversion to valuable chemicals-is a challenging contemporary issue having multi-facets.The prospect to utilize carbon dioxide(CO_(2))as a feedstock for synthetic applications in chemical and fuel industries-through carboxylation and reduction reactions-is the subject of this review.Current statute of the heterogeneously catalyzed hydrogenation,as well as the photocatalytic and electrocatalytic activations of conversion of CO_(2) to value-added chemicals is overviewed.Envisaging CO_(2) as a viable alternative to natural gas and oil as carbon resource for the chemical supply chain,three stages of development;namely,(i)existing mature technologies(such as urea production),(ii)emerging technologies(such as formic acid or other single carbon(C1)chemicals manufacture)and(iii)innovative explorations(such as electrocatalytic ethylene production)have been identified and highlighted.A unique aspect of this review is the exploitations of reactions of CO2 ewhich stems from existing petrochemical plants-with the commodity petrochemicals(such as,methanol,ethylene and ethylene oxide)produced at the same or nearby complex in order to obtain value-added products while contributing also to CO_(2) fixation simultaneously.Exemplifying worldwide ethylene oxide facilities,it is recognized that they produce about 3 million tons of CO2 annually.Such a CO_(2) resource,which is already separated in pure form as a requirement of the process,should best be converted to a value-added chemical there avoiding current practice of discharging to the atmosphere.The potential utilization of CO_(2),captured at power plants,should also been taken into consideration for sustainability.This CO_(2) source,which is potentially a raw material for the chemical industry,will be available at sufficient quality and at gigantic quantity upon realization of on-going tangible capture projects.Products resulting from carboxylation reactions are obvious conversions.In addition,provided that enough supply of energy from non-fossil resources,such as solar[1],is ensured,CO_(2) reduction reactions can produce several valuable commodity chemicals including multi-carbon compounds,such as ethylene and acrylic acid,in addition to C1 chemicals and polymers.Presently,there are only few developing technologies which can find industrial applications.Therefore,there is a need for concerted research in order to assess the viability of these promising exploratory technologies rationally. 展开更多
关键词 Carbon capture and conversion CARBOXYLATION Catalysis C1-chemicals co_(2)utilization coPOLYMERIZATION Dream reactions ELECTROCATALYSIS Photocatalysis Polymerization Reduction
原文传递
Developments on CO_(2)-utilization technologies 被引量:1
18
作者 Qian Zhu 《Clean Energy》 EI 2019年第2期85-100,共16页
As an additional CO_(2)-mitigation strategy to carbon capture and storage,CO_(2)capture and utilization(CCU)is attracting increasing interest globally.The potential applications of CCU are diverse,ranging from using C... As an additional CO_(2)-mitigation strategy to carbon capture and storage,CO_(2)capture and utilization(CCU)is attracting increasing interest globally.The potential applications of CCU are diverse,ranging from using CO_(2)in greenhouses and farming to conversion of CO_(2)into fuels,chemicals,polymers and building materials.CO_(2)has already been used for decades with mature technologies in various industrial processes such as CO_(2)-enhanced oil recovery,the food and beverage industry,urea production,water treatment and the production of fire retardants and coolants.There are also many new CO_(2)-utilization technologies at various stages of development and commercialization.These technologies have the potential to provide opportunities for emission savings for power and other industrial sectors by partially substituting fossil-fuel raw materials,increasing efficiency and using renewable energy,and generating revenues through producing marketable products.This paper investigates the CO_(2)-utilization technologies that convert CO_(2)into commercial products via chemical and biochemical reactions with a focus on front-running technologies that are at,or close to,large-scale demonstration or commercialization.The CO_(2)-utilization technologies are grouped according to the technological routes used,such as electrochemical,photocatalytic and photosynthetic,catalytic,biological process(using microbes and enzymes),copolymerization and mineralization.Recent developments and the status of the CO_(2)-utilization technologies are reviewed.The environmental impact of CCU is also discussed in terms of life-cycle analysis. 展开更多
关键词 CCUS co_(2)conversion co_(2)utilization co_(2)to fuels co_(2)to chemicals co_(2)mineralization carbon capture energy chemistry and catalysis
原文传递
Nanofluidic osmotic power generation from CO_(2) with cellulose membranes
19
作者 Chang Chen Xueli Liu +6 位作者 Renxing Huang Kuankuan Liu Shangfa Pan Junchao Lao Qi Li Jun Gao Lei Jiang 《Green Carbon》 2023年第1期58-64,共7页
The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via... The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy.Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process.In principle,any chemicals that can be converted to ions can be used for nanofluidic power generation.In this work,we demonstrate the power generation from the diffusion of CO_(2) into air using nanofluidic cellulose membranes.By dissolving CO_(2) in water,a power density of 87 mW/m^(2) can be achieved.Using monoethanolamine solutions to dissolve CO_(2),the power density can be increased to 2.6 W/m^(2).We further demonstrate that the waste heat released in industrial and carbon capture processes,can be simultaneously harvested with our nanofluidic membranes,increasing the power density up to 16 W/m^(2) under a temperature difference of 30°C.Therefore,our work should expand the application scope of nanofluidic osmotic power generation and contribute to carbon utilization and capture technologies. 展开更多
关键词 Nanofluidics Osmotic power generation co_(2)utilization cellulose membranes waste heat utilization
下载PDF
Co-promoted Mo-carbide catalytic system for sustainable manufacturing of chemicals via co-processing of CO_(2) with ethane
20
作者 Vera Bikbaeva Nikolay Nesterenko +1 位作者 Nuria García-Moncada Valentin Valtchev 《Green Carbon》 2023年第1期94-103,共10页
The study reports progress in developing a molybdenum carbide-based catalyst for co-processing ethane and CO_(2).The cobalt promoting of molybdenum carbide improved the activity and stability of ethane transformation ... The study reports progress in developing a molybdenum carbide-based catalyst for co-processing ethane and CO_(2).The cobalt promoting of molybdenum carbide improved the activity and stability of ethane transformation in the presence of CO_(2) substantially without any impact on ethylene selectivity.The Mo-Co supported catalyst also showed interesting performance in catalyzing ethane dry reforming and that application could be a perspective further use for this system.In addition,the comprehensive analysis of mono-and bi-metallic catalysts revealed that Co-promoting prevented rapid Mo-carbide oxidation.Further,tuning operation conditions allowed to control catalyst’s selectivity and maximize CO_(2) utilization or ethylene formation. 展开更多
关键词 co_(2)utilization Oxidative dehydrogenation co_(2)negative ethylene production cobalt-molybdenum synergy Embryonic zeolite
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部