The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to secur...The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.展开更多
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Tel...The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.展开更多
Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approac...Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.展开更多
With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA)....With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA).A modified version of the traditional N-Th Degree Truncated Polynomial Ring(NTRU)cryptosystem called NTRU Prime has been developed to reduce the attack surface.In this paper,the Signcryption scheme was proposed,and it is most efficient than others since it reduces the complexity and runs the time of the code execution,and at the same time,provides a better security degree since it ensures the integrity of the sent message,confidentiality of the data,forward secrecy when using refreshed parameters for each session.Unforgeability to prevent the man-in-the-middle attack from being active or passive,and non-repudiation when the sender can’t deny the recently sent message.This study aims to create a novel NTRU cryptography algorithm system that takes advantage of the security features of curve fitting operations and the valuable characteristics of chaotic systems.The proposed algorithm combines the(NTRU Prime)and Shamir’s Secret Sharing(SSS)features to improve the security of the NTRU encryption and key generation stages that rely on robust polynomial generation.Based on experimental results and a comparison of the time required for crucial exchange between NTRU-SSS and the original NTRU,this study shows a rise in complexity with a decrease in execution time in the case when compared to the original NTRU.It’s encouraging to see signs that the suggested changes to the NTRU work to increase accuracy and efficiency.展开更多
Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge ...Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting.展开更多
Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud serv...Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud server from attacks that have been able to protect the cloud server attacks.Still,the attackers have designed even better mechanisms to break these security algorithms.Cloud cryptography is the best data protection algorithm that exchanges data between authentic users.In this article,one symmetric cryptography algorithm will be designed to secure cloud server data,used to send and receive cloud server data securely.A double encryption algorithm will be implemented to send data in a secure format.First,the XOR function will be applied to plain text,and then salt technique will be used.Finally,a reversing mechanism will be implemented on that data to provide more data security.To decrypt data,the cipher text will be reversed,salt will be removed,andXORwill be implemented.At the end of the paper,the proposed algorithm will be compared with other algorithms,and it will conclude how much better the existing algorithm is than other algorithms.展开更多
This paper proposes a cryptographic technique on images based on the Sudoku solution.Sudoku is a number puzzle,which needs applying defined protocols and filling the empty boxes with numbers.Given a small size of numb...This paper proposes a cryptographic technique on images based on the Sudoku solution.Sudoku is a number puzzle,which needs applying defined protocols and filling the empty boxes with numbers.Given a small size of numbers as input,solving the sudoku puzzle yields an expanded big size of numbers,which can be used as a key for the Encryption/Decryption of images.In this way,the given small size of numbers can be stored as the prime key,which means the key is compact.A prime key clue in the sudoku puzzle always leads to only one solution,which means the key is always stable.This feature is the background for the paper,where the Sudoku puzzle output can be innovatively introduced in image cryptography.Sudoku solution is expanded to any size image using a sequence of expansion techniques that involve filling of the number matrix,Linear X-Y rotational shifting,and reverse shifting based on a standard zig-zag pattern.The crypto key for an image dictates the details of positions,where the image pixels have to be shuffled.Shuffling is made at two levels,namely pixel and sub-pixel(RGB)levels for an image,with the latter having more effective Encryption.The brought-out technique falls under the Image scrambling method with partial diffusion.Performance metrics are impressive and are given by a Histogram deviation of 0.997,a Correlation coefficient of 10−2 and an NPCR of 99.98%.Hence,it is evident that the image cryptography with the sudoku kept in place is more efficient against Plaintext and Differential attacks.展开更多
Protecting the privacy of data in the multi-cloud is a crucial task.Data mining is a technique that protects the privacy of individual data while mining those data.The most significant task entails obtaining data from...Protecting the privacy of data in the multi-cloud is a crucial task.Data mining is a technique that protects the privacy of individual data while mining those data.The most significant task entails obtaining data from numerous remote databases.Mining algorithms can obtain sensitive information once the data is in the data warehouse.Many traditional algorithms/techniques promise to provide safe data transfer,storing,and retrieving over the cloud platform.These strategies are primarily concerned with protecting the privacy of user data.This study aims to present data mining with privacy protection(DMPP)using precise elliptic curve cryptography(PECC),which builds upon that algebraic elliptic curve infinitefields.This approach enables safe data exchange by utilizing a reliable data consolidation approach entirely reliant on rewritable data concealing techniques.Also,it outperforms data mining in terms of solid privacy procedures while maintaining the quality of the data.Average approximation error,computational cost,anonymizing time,and data loss are considered performance measures.The suggested approach is practical and applicable in real-world situations according to the experimentalfindings.展开更多
Nowadays,Wireless Sensor Network(WSN)is a modern technology with a wide range of applications and greatly attractive benefits,for example,self-governing,low expenditure on execution and data communication,long-term fu...Nowadays,Wireless Sensor Network(WSN)is a modern technology with a wide range of applications and greatly attractive benefits,for example,self-governing,low expenditure on execution and data communication,long-term function,and unsupervised access to the network.The Internet of Things(IoT)is an attractive,exciting paradigm.By applying communication technologies in sensors and supervising features,WSNs have initiated communication between the IoT devices.Though IoT offers access to the highest amount of information collected through WSNs,it leads to privacy management problems.Hence,this paper provides a Logistic Regression machine learning with the Elliptical Curve Cryptography technique(LRECC)to establish a secure IoT structure for preventing,detecting,and mitigating threats.This approach uses the Elliptical Curve Cryptography(ECC)algorithm to generate and distribute security keys.ECC algorithm is a light weight key;thus,it minimizes the routing overhead.Furthermore,the Logistic Regression machine learning technique selects the transmitter based on intelligent results.The main application of this approach is smart cities.This approach provides continuing reliable routing paths with small overheads.In addition,route nodes cooperate with IoT,and it handles the resources proficiently and minimizes the 29.95%delay.展开更多
Smart Grids(SGs)are introduced as a solution for standard power dis-tribution.The significant capabilities of smart grids help to monitor consumer behaviors and power systems.However,the delay-sensitive network faces n...Smart Grids(SGs)are introduced as a solution for standard power dis-tribution.The significant capabilities of smart grids help to monitor consumer behaviors and power systems.However,the delay-sensitive network faces numer-ous challenges in which security and privacy gain more attention.Threats to trans-mitted messages,control over smart grid information and user privacy are the major concerns in smart grid security.Providing secure communication between the service provider and the user is the only possible solution for these security issues.So,this research work presents an efficient mutual authentication and key agreement protocol for smart grid communication using elliptic curve crypto-graphy which is robust against security threats.A trust authority module is intro-duced in the security model apart from the user and service provider for authentication.The proposed approach performance is verified based on different security features,communication costs,and computation costs.The comparative analysis of experimental results demonstrates that the proposed authentication model attains better performance than existing state of art of techniques.展开更多
E-administration is performing administrative works via computer and its associated technologies such as the Internet. It is administrative efforts that center on the exchange of information and providing services to ...E-administration is performing administrative works via computer and its associated technologies such as the Internet. It is administrative efforts that center on the exchange of information and providing services to people and the business sector at high speed and low cost through computers and networks with the assurance of maintaining information security. It is based on the positive investment in information technology and communication in administrative practices. This paper presents the design of the e-administration platform that adopts the concept of cryptography for identity management. The architectural framework of the platform comprises subcomponents for service and forms identification, business process redesign, service architecture, amalgamation, and deployment. The cryptography model for securing the platform was designed based on the combination of authentication criteria presented in the Rijndael-Advanced Encryption Standard (AES), Lattice-based cryptography (LBC), and Secure Hash Algorithm (SHA512). It is required that a record be encrypted prior to its commitment to the database via a double encryption method. The AES algorithm-based encryption’s output will form the input to the LBC algorithm to obtain the final output.展开更多
In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramou...In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.展开更多
In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual ...In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.展开更多
Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS...Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.展开更多
The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well ...The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well as special characters. So, the paper gives the transformation of characters Tifinagh into points on elliptic curve by using the corresponding characters Latin. The obtained correspondence has been applied in Menezes-Vanstone cryptosystem based on elliptic curve. Therefore, the paper explains in detail its implementation in Maple 12.展开更多
The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic...The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic about successful communication between the legitimate users, Alice and Bob, is discussed with probability of solution uniqueness of Bob’s decryption equation. We find, by probabilistic analysis, that success of communication between Alice and Bob is probabilistic with a probability bigger than 1/2. It is also novel to define insecurity of the quantum cryptography by probability of solution uniqueness of the search equation of Eve, the eavesdropper. The probability of Eve’s success to find the plain-text of Alice (and Bob) is greater than 1/2, and so the quantum cryptography is seriously insecure.展开更多
There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some speci...There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some special groups and methods can applied on. We will touch on group based public key cryptography and will give some suggestions in this area.展开更多
An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNA...An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.展开更多
A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over fini...A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.展开更多
文摘The Internet of Things(IoT)has taken the interconnected world by storm.Due to their immense applicability,IoT devices are being scaled at exponential proportions worldwide.But,very little focus has been given to securing such devices.As these devices are constrained in numerous aspects,it leaves network designers and administrators with no choice but to deploy them with minimal or no security at all.We have seen distributed denial-ofservice attacks being raised using such devices during the infamous Mirai botnet attack in 2016.Therefore we propose a lightweight authentication protocol to provide proper access to such devices.We have considered several aspects while designing our authentication protocol,such as scalability,movement,user registration,device registration,etc.To define the architecture we used a three-layered model consisting of cloud,fog,and edge devices.We have also proposed several pre-existing cipher suites based on post-quantum cryptography for evaluation and usage.We also provide a fail-safe mechanism for a situation where an authenticating server might fail,and the deployed IoT devices can self-organize to keep providing services with no human intervention.We find that our protocol works the fastest when using ring learning with errors.We prove the safety of our authentication protocol using the automated validation of Internet security protocols and applications tool.In conclusion,we propose a safe,hybrid,and fast authentication protocol for authenticating IoT devices in a fog computing environment.
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
基金supported through Universiti Sains Malaysia(USM)and the Ministry of Higher Education Malaysia providing the research grant,Fundamental Research Grant Scheme(FRGS-Grant No.FRGS/1/2020/TK0/USM/02/1).
文摘The rapid adoption of Internet of Things(IoT)technologies has introduced significant security challenges across the physical,network,and application layers,particularly with the widespread use of the Message Queue Telemetry Transport(MQTT)protocol,which,while efficient in bandwidth consumption,lacks inherent security features,making it vulnerable to various cyber threats.This research addresses these challenges by presenting a secure,lightweight communication proxy that enhances the scalability and security of MQTT-based Internet of Things(IoT)networks.The proposed solution builds upon the Dang-Scheme,a mutual authentication protocol designed explicitly for resource-constrained environments and enhances it using Elliptic Curve Cryptography(ECC).This integration significantly improves device authentication,data confidentiality,and energy efficiency,achieving an 87.68%increase in data confidentiality and up to 77.04%energy savings during publish/subscribe communications in smart homes.The Middleware Broker System dynamically manages transaction keys and session IDs,offering robust defences against common cyber threats like impersonation and brute-force attacks.Penetration testing with tools such as Hydra and Nmap further validated the system’s security,demonstrating its potential to significantly improve the security and efficiency of IoT networks while underscoring the need for ongoing research to combat emerging threats.
基金supported by the National Key Research and Development Program of China under Grant No.2021YFB2700600the National Natural Science Foundation of China under Grant No.62132013+5 种基金the Key Research and Development Programs of Shaanxi under Grant Nos.S2024-YF-YBGY-1540 and 2021ZDLGY06-03the Basic Strengthening Plan Program under Grant No.2023-JCJQ-JJ-0772the Key-Area Research and Development Program of Guangdong Province under Grant No.2021B0101400003Hong Kong RGC Research Impact Fund under Grant Nos.R5060-19 and R5034-18Areas of Excellence Scheme under Grant No.Ao E/E-601/22-RGeneral Research Fund under Grant Nos.152203/20E,152244/21E,152169/22E and152228/23E。
文摘Traditional methods of identity authentication often rely on centralized architectures,which poses risks of computational overload and single points of failure.We propose a protocol that offers a decentralized approach by distributing authentication services to edge authentication gateways and servers,facilitated by blockchain technology,thus aligning with the decentralized ethos of Web3 infrastructure.Additionally,we enhance device security against physical and cloning attacks by integrating physical unclonable functions with certificateless cryptography,bolstering the integrity of Internet of Thins(IoT)devices within the evolving landscape of the metaverse.To achieve dynamic anonymity and ensure privacy within Web3 environments,we employ fuzzy extractor technology,allowing for updates to pseudonymous identity identifiers while maintaining key consistency.The proposed protocol ensures continuous and secure identity authentication for IoT devices in practical applications,effectively addressing the pressing security concerns inherent in IoT network environments and contributing to the development of robust security infrastructure essential for the proliferation of IoT devices across diverse settings.
文摘With the advent of quantum computing,numerous efforts have been made to standardize post-quantum cryptosystems with the intention of(eventually)replacing Elliptic Curve Cryptography(ECC)and Rivets-Shamir-Adelman(RSA).A modified version of the traditional N-Th Degree Truncated Polynomial Ring(NTRU)cryptosystem called NTRU Prime has been developed to reduce the attack surface.In this paper,the Signcryption scheme was proposed,and it is most efficient than others since it reduces the complexity and runs the time of the code execution,and at the same time,provides a better security degree since it ensures the integrity of the sent message,confidentiality of the data,forward secrecy when using refreshed parameters for each session.Unforgeability to prevent the man-in-the-middle attack from being active or passive,and non-repudiation when the sender can’t deny the recently sent message.This study aims to create a novel NTRU cryptography algorithm system that takes advantage of the security features of curve fitting operations and the valuable characteristics of chaotic systems.The proposed algorithm combines the(NTRU Prime)and Shamir’s Secret Sharing(SSS)features to improve the security of the NTRU encryption and key generation stages that rely on robust polynomial generation.Based on experimental results and a comparison of the time required for crucial exchange between NTRU-SSS and the original NTRU,this study shows a rise in complexity with a decrease in execution time in the case when compared to the original NTRU.It’s encouraging to see signs that the suggested changes to the NTRU work to increase accuracy and efficiency.
文摘Medical data mining has become an essential task in healthcare sector to secure the personal and medical data of patients using privacy policy.In this background,several authentication and accessibility issues emerge with an inten-tion to protect the sensitive details of the patients over getting published in open domain.To solve this problem,Multi Attribute Case based Privacy Preservation(MACPP)technique is proposed in this study to enhance the security of privacy-preserving data.Private information can be any attribute information which is categorized as sensitive logs in a patient’s records.The semantic relation between transactional patient records and access rights is estimated based on the mean average value to distinguish sensitive and non-sensitive information.In addition to this,crypto hidden policy is also applied here to encrypt the sensitive data through symmetric standard key log verification that protects the personalized sensitive information.Further,linear integrity verification provides authentication rights to verify the data,improves the performance of privacy preserving techni-que against intruders and assures high security in healthcare setting.
文摘Many organizations have insisted on protecting the cloud server from the outside,although the risks of attacking the cloud server are mostly from the inside.There are many algorithms designed to protect the cloud server from attacks that have been able to protect the cloud server attacks.Still,the attackers have designed even better mechanisms to break these security algorithms.Cloud cryptography is the best data protection algorithm that exchanges data between authentic users.In this article,one symmetric cryptography algorithm will be designed to secure cloud server data,used to send and receive cloud server data securely.A double encryption algorithm will be implemented to send data in a secure format.First,the XOR function will be applied to plain text,and then salt technique will be used.Finally,a reversing mechanism will be implemented on that data to provide more data security.To decrypt data,the cipher text will be reversed,salt will be removed,andXORwill be implemented.At the end of the paper,the proposed algorithm will be compared with other algorithms,and it will conclude how much better the existing algorithm is than other algorithms.
基金supported by the government of the Basque Country for the ELKARTEK21/10 KK-2021/00014 and ELKARTEK22/85 Research Programs,respectively。
文摘This paper proposes a cryptographic technique on images based on the Sudoku solution.Sudoku is a number puzzle,which needs applying defined protocols and filling the empty boxes with numbers.Given a small size of numbers as input,solving the sudoku puzzle yields an expanded big size of numbers,which can be used as a key for the Encryption/Decryption of images.In this way,the given small size of numbers can be stored as the prime key,which means the key is compact.A prime key clue in the sudoku puzzle always leads to only one solution,which means the key is always stable.This feature is the background for the paper,where the Sudoku puzzle output can be innovatively introduced in image cryptography.Sudoku solution is expanded to any size image using a sequence of expansion techniques that involve filling of the number matrix,Linear X-Y rotational shifting,and reverse shifting based on a standard zig-zag pattern.The crypto key for an image dictates the details of positions,where the image pixels have to be shuffled.Shuffling is made at two levels,namely pixel and sub-pixel(RGB)levels for an image,with the latter having more effective Encryption.The brought-out technique falls under the Image scrambling method with partial diffusion.Performance metrics are impressive and are given by a Histogram deviation of 0.997,a Correlation coefficient of 10−2 and an NPCR of 99.98%.Hence,it is evident that the image cryptography with the sudoku kept in place is more efficient against Plaintext and Differential attacks.
文摘Protecting the privacy of data in the multi-cloud is a crucial task.Data mining is a technique that protects the privacy of individual data while mining those data.The most significant task entails obtaining data from numerous remote databases.Mining algorithms can obtain sensitive information once the data is in the data warehouse.Many traditional algorithms/techniques promise to provide safe data transfer,storing,and retrieving over the cloud platform.These strategies are primarily concerned with protecting the privacy of user data.This study aims to present data mining with privacy protection(DMPP)using precise elliptic curve cryptography(PECC),which builds upon that algebraic elliptic curve infinitefields.This approach enables safe data exchange by utilizing a reliable data consolidation approach entirely reliant on rewritable data concealing techniques.Also,it outperforms data mining in terms of solid privacy procedures while maintaining the quality of the data.Average approximation error,computational cost,anonymizing time,and data loss are considered performance measures.The suggested approach is practical and applicable in real-world situations according to the experimentalfindings.
文摘Nowadays,Wireless Sensor Network(WSN)is a modern technology with a wide range of applications and greatly attractive benefits,for example,self-governing,low expenditure on execution and data communication,long-term function,and unsupervised access to the network.The Internet of Things(IoT)is an attractive,exciting paradigm.By applying communication technologies in sensors and supervising features,WSNs have initiated communication between the IoT devices.Though IoT offers access to the highest amount of information collected through WSNs,it leads to privacy management problems.Hence,this paper provides a Logistic Regression machine learning with the Elliptical Curve Cryptography technique(LRECC)to establish a secure IoT structure for preventing,detecting,and mitigating threats.This approach uses the Elliptical Curve Cryptography(ECC)algorithm to generate and distribute security keys.ECC algorithm is a light weight key;thus,it minimizes the routing overhead.Furthermore,the Logistic Regression machine learning technique selects the transmitter based on intelligent results.The main application of this approach is smart cities.This approach provides continuing reliable routing paths with small overheads.In addition,route nodes cooperate with IoT,and it handles the resources proficiently and minimizes the 29.95%delay.
文摘Smart Grids(SGs)are introduced as a solution for standard power dis-tribution.The significant capabilities of smart grids help to monitor consumer behaviors and power systems.However,the delay-sensitive network faces numer-ous challenges in which security and privacy gain more attention.Threats to trans-mitted messages,control over smart grid information and user privacy are the major concerns in smart grid security.Providing secure communication between the service provider and the user is the only possible solution for these security issues.So,this research work presents an efficient mutual authentication and key agreement protocol for smart grid communication using elliptic curve crypto-graphy which is robust against security threats.A trust authority module is intro-duced in the security model apart from the user and service provider for authentication.The proposed approach performance is verified based on different security features,communication costs,and computation costs.The comparative analysis of experimental results demonstrates that the proposed authentication model attains better performance than existing state of art of techniques.
文摘E-administration is performing administrative works via computer and its associated technologies such as the Internet. It is administrative efforts that center on the exchange of information and providing services to people and the business sector at high speed and low cost through computers and networks with the assurance of maintaining information security. It is based on the positive investment in information technology and communication in administrative practices. This paper presents the design of the e-administration platform that adopts the concept of cryptography for identity management. The architectural framework of the platform comprises subcomponents for service and forms identification, business process redesign, service architecture, amalgamation, and deployment. The cryptography model for securing the platform was designed based on the combination of authentication criteria presented in the Rijndael-Advanced Encryption Standard (AES), Lattice-based cryptography (LBC), and Secure Hash Algorithm (SHA512). It is required that a record be encrypted prior to its commitment to the database via a double encryption method. The AES algorithm-based encryption’s output will form the input to the LBC algorithm to obtain the final output.
文摘In the contemporary era,the abundant availability of health information through internet and mobile technology raises concerns.Safeguarding and maintaining the confidentiality of patients’medical data becomes paramount when sharing such information with authorized healthcare providers.Although electronic patient records and the internet have facilitated the exchange of medical information among healthcare providers,concerns persist regarding the security of the data.The security of Electronic Health Record Systems(EHRS)can be improved by employing the Cuckoo Search Algorithm(CS),the SHA-256 algorithm,and the Elliptic Curve Cryptography(ECC),as proposed in this study.The suggested approach involves usingCS to generate the ECCprivate key,thereby enhancing the security of data storage in EHR.The study evaluates the proposed design by comparing encoding and decoding times with alternative techniques like ECC-GA-SHA-256.The research findings indicate that the proposed design achieves faster encoding and decoding times,completing 125 and 175 iterations,respectively.Furthermore,the proposed design surpasses other encoding techniques by exhibiting encoding and decoding times that are more than 15.17%faster.These results imply that the proposed design can significantly enhance the security and performance of EHRs.Through the utilization of CS,SHA-256,and ECC,this study presents promising methods for addressing the security challenges associated with EHRs.
文摘In visual cryptography, many shares are generated which are illogical containing certain message within themselves. When all shares are piled jointly, they tend to expose the secret of the image. The notion of visual secret sharing scheme is to encrypt a secret image into n illogical share images. It is unable to reveal any data on the original image if at least one of the shares is not achieved. The original image, in fact, is realized by overlapping the entire shares directly, in order that the human visual system is competent to identify the collective secret image without employing any complicated computational tools. Therefore, they are communicated steadily as number of shares. The elliptic curve cryptography approach, in turn, is employed to augment the privacy and safety of the image. The new.fangled technique is utilized to generate the multiple shares which are subjected to encryption and decryption by means of the elliptic curve cryptography technique. The test outcomes have revealed the fact that the peak signal to noise ratio is 58.0025, Mean square error value is 0.1164 and the correlation coefficient is 1 for the decrypted image without any sort of distortion of the original image.
基金supported in part by the Testbed@TWISC, National Science Council under the Grant No. 100-2219-E-006-001in part by National Natural Science Foundation of China under the Grant No. 60903210
文摘Visual cryptography scheme (VCS) is a secure method that encrypts a secret image by subdividing it into shadow images. Due to the nature of encryption VCS is categorized into two types: the deterministic VCS (DVCS) and the probabilistie VCS (PVCS). For the DVCS, we use m (known as the pixel expansion) subpixels to represent a secret pixel. The PVCS uses only one subpixel to represent a secret pixel, while the quality of reconstructed image is degraded. A well-known construction of (k, n)-PVCS is obtained from the (k, n)-DVCS. In this paper, we show another construction of (k, n)-PVCS by extending the (k, k)-PVCS.
文摘The paper describes the concept of plaintext encryption by using the Unicode characters. In the case of elliptic curve cryptography, there is not specified rule or algorithm to specify the letters of Tifinagh as well as special characters. So, the paper gives the transformation of characters Tifinagh into points on elliptic curve by using the corresponding characters Latin. The obtained correspondence has been applied in Menezes-Vanstone cryptosystem based on elliptic curve. Therefore, the paper explains in detail its implementation in Maple 12.
文摘The existing quantum cryptography is a classical cryptography in nature and basically insecure because of its classical (conventional) bits, classical encryption algorithm and classical (public) channel. A novel topic about successful communication between the legitimate users, Alice and Bob, is discussed with probability of solution uniqueness of Bob’s decryption equation. We find, by probabilistic analysis, that success of communication between Alice and Bob is probabilistic with a probability bigger than 1/2. It is also novel to define insecurity of the quantum cryptography by probability of solution uniqueness of the search equation of Eve, the eavesdropper. The probability of Eve’s success to find the plain-text of Alice (and Bob) is greater than 1/2, and so the quantum cryptography is seriously insecure.
文摘There are quite more applications of group theory. The recent application of group theory is public key (asymmetric) cryptography. All cryptographic algorithms have some weaknesses. To avoid its weakness, some special groups and methods can applied on. We will touch on group based public key cryptography and will give some suggestions in this area.
基金supported by the National Natural Science Foundation of China(60373109)Ministry of Science and Technologyof China and the National Commercial Cryptography Application Technology Architecture and Application DemonstrationProject(2008BAA22B02).
文摘An embedded cryptosystem needs higher reconfiguration capability and security. After analyzing the newly emerging side-channel attacks on elliptic curve cryptosystem (ECC), an efficient fractional width-w NAF (FWNAF) algorithm is proposed to secure ECC scalar multiplication from these attacks. This algorithm adopts the fractional window method and probabilistic SPA scheme to reconfigure the pre-computed table, and it allows designers to make a dynamic configuration on pre-computed table. And then, it is enhanced to resist SPA, DPA, RPA and ZPA attacks by using the random masking method. Compared with the WBRIP and EBRIP methods, our proposals has the lowest total computation cost and reduce the shake phenomenon due to sharp fluctuation on computation performance.
基金Supported bythe Specialized Research Fundfor the Doctoral Programof Higher Education of China (20050183032) the Science Foundation Project of Jilin Province Education Office(2005180 ,2005181)
文摘A new public key encryption scheme is proposed in this paper, which is based on a hard problem over ergodic matrices. The security of this scheme is equal to the MQ-problem: multivariate quadratic equations over finite fields. This problem has been shown to be NP-complete and can't be solved with polynomial time algorithm.