目的:研究MRI 3D CUBE T_(2)序列检查在踝关节外伤患者韧带损伤诊断中的价值。方法:选择2020年4月—2023年4月于白银市第一人民医院就诊的226例踝关节外伤拟行手术术前患者作为研究对象,按照不同检查方式将患者分为观察组(n=126)与对照...目的:研究MRI 3D CUBE T_(2)序列检查在踝关节外伤患者韧带损伤诊断中的价值。方法:选择2020年4月—2023年4月于白银市第一人民医院就诊的226例踝关节外伤拟行手术术前患者作为研究对象,按照不同检查方式将患者分为观察组(n=126)与对照组(n=100)。观察组采用MRI 3D CUBE T_(2)序列检查,对照组采取常规MRI检查。比较两组患侧、健侧距腓前韧带测量结果、诊断效能。结果:两组患侧、健侧距腓前韧带宽度及厚度比较,差异无统计学意义(P>0.05)。观察组Ⅰ级踝关节外伤患者韧带损伤诊断准确度、敏感度、特异度、阳性预测值、阴性预测值高于对照组,Ⅱ级患者准确度、敏感度、阴性预测值高于对照组,Ⅲ级患者准确度、特异度、阳性预测值高于对照组,差异有统计学意义(P<0.05)。结论:MRI 3D CUBE T_(2)序列检查踝关节外伤患者韧带损伤诊断效能高于常规MRI检查,可作为治疗效果评价及康复治疗的重要依据。展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
文摘目的:研究MRI 3D CUBE T_(2)序列检查在踝关节外伤患者韧带损伤诊断中的价值。方法:选择2020年4月—2023年4月于白银市第一人民医院就诊的226例踝关节外伤拟行手术术前患者作为研究对象,按照不同检查方式将患者分为观察组(n=126)与对照组(n=100)。观察组采用MRI 3D CUBE T_(2)序列检查,对照组采取常规MRI检查。比较两组患侧、健侧距腓前韧带测量结果、诊断效能。结果:两组患侧、健侧距腓前韧带宽度及厚度比较,差异无统计学意义(P>0.05)。观察组Ⅰ级踝关节外伤患者韧带损伤诊断准确度、敏感度、特异度、阳性预测值、阴性预测值高于对照组,Ⅱ级患者准确度、敏感度、阴性预测值高于对照组,Ⅲ级患者准确度、特异度、阳性预测值高于对照组,差异有统计学意义(P<0.05)。结论:MRI 3D CUBE T_(2)序列检查踝关节外伤患者韧带损伤诊断效能高于常规MRI检查,可作为治疗效果评价及康复治疗的重要依据。
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.