DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes an...DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes and the transition state in the process of ET reaction was performed at 6-31G basis set level. The activation energy. the coupling matrix element and the rate constant of the ET reaction are calculated at semi-quantitative level.展开更多
Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the diff...Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.展开更多
The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic s...The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic shell structures of metallic clusters.展开更多
基金the Natural Science Foundation of Shandong Pro\incethe National Kc' Laboratory' Foundation of Crustal Material the Natio
文摘DFT/BLYP method is used to theoretically investigate the electron transfer (ET) reactions between M (Li, Na, Mg)-C_6H_6 and M+-C_6H_6 complexes in the gas phase. The geometry optimization of the precursor complexes and the transition state in the process of ET reaction was performed at 6-31G basis set level. The activation energy. the coupling matrix element and the rate constant of the ET reaction are calculated at semi-quantitative level.
基金The study was supported by the Education and Research Project for Young and Middle-Aged Teachers in Fujian Province(JAT201167).
文摘Plasma-assisted ball milling was carried out on the Al+C3H6N6 system and Al+C_(4)H_(4)N_(4) system,respectively.The phase structure,functional groups and synthesis mechanism were analyzed by XRD and FT-IR,and the differences in the synthesis process of nano-AlN with different solid nitrogen sources were discussed.The results show that C3H6N6 has a stable triazine ring structure,and its chemical bond is firm and difficult to break,so AlN cannot be synthesized directly by solid-solid reaction at room temperature.However,there are a large number of nitrile groups(-CN)and amino groups(-NH_(2))in C_(4)H_(4)N_(4) molecules.Under the combined action of plasma bombardment and mechanical energy activation,C_(4)H_(4)N_(4) molecules undergo polycondensation and deamination,so that the ball milling tank is filled with a large number of active nitrogen-containing groups such as N=,≡N,etc.These groups and ball milling activated Al can synthesize nano-AlN at room temperature,with a conversion rate of 92%.SEM,DSC/TG analysis showed that the powder obtained by ball milling was formed by soft agglomeration of many fine primary particles about 50–80 nm.The surface morphology of the powder was loose and porous,and it had strong activity.After annealing at 800℃,the conversion rate of the Al+C_(4)H_(4)N_(4) system reached 99%.
基金The financial support for this work was provided by the National Natural Science Foundation of China(grant no.21722308 and 21802146)by Beijing Natural Science Foundation(2192064)+1 种基金by the National Project Development of Advanced Scientific Instruments Based on Deep Ultraviolet Laser Source(no.Y31M0112C1)by Key Research Program of Frontier Sciences(CAS,Grant QYZDBSSW-SLH024).
文摘The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic shell structures of metallic clusters.