Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcycl...Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.展开更多
The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usuall...The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.展开更多
The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by ...The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.展开更多
The effect of Ca addition on modification of primary Mg_(2)Si,hardness and wear behavior in Mg-5 wt.%Si hypereutectic alloy has been investigated.The results showed clearly that without Ca addition,most of primary Mg_...The effect of Ca addition on modification of primary Mg_(2)Si,hardness and wear behavior in Mg-5 wt.%Si hypereutectic alloy has been investigated.The results showed clearly that without Ca addition,most of primary Mg_(2)Si appeared as coarse dendritic morphology with average size of about 215μm.With the addition of 0.1 wt.%Ca,the average size of primary Mg_(2)Si decreased to about 98μm,but their morphologies did not significantly changed.As the addition level of Ca increased to 0.3 wt.%,the average size of primary Mg_(2)Si decreased significantly to about 50μm and their morphologies changed to polyhedral shape.However,with further increasing Ca addition to 0.6 wt.%and 1 wt.%,some needle-like and blocky CaMgSi particles formed and the average size of primary Mg_(2)Si increased slightly,which could described as over-modification.The present work showed that the optimal modification effect could be obtained when the Ca content in the investigated alloy reached 0.3 wt.%.The modification mechanism may be referred mainly due to poisoning effect resulting from the segregation of Ca atoms at the growth front of the Mg_(2)Si and the adsorption effect of some Ca atoms in the Mg_(2)Si crystal growth plane.The 0.3 wt.%Ca-added alloy has the highest hardness value and the best wear resistance among all other alloys.An excessive Ca addition resulted in the formation of some needle-like and blocky CaMgSi particles,which was detrimental to hardness and wear behavior of the 0.6 wt.%and 1 wt.%Ca-added alloys.The wear mechanism of investigated alloys is a mild abrasive oxidative wear with little adhesion.展开更多
Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temper...Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temperature ranging from 423 to 491 K. The microstructure of AZ61 alloy contains α(Mg) matrix and Mg17 Al12 intermetallic phases. It is shown that adding Ca to AZ61 alloy reduces the amount of Mg17 Al12 phase via forming(Mg,Al)2 Ca phase;furthermore, increasing the Ca content to 3 wt.% leads to the formation of(Mg,Al)2 Ca phase, as well as the elimination of the Mg17 Al12 phase. Creep properties of AZ61 alloy are improved with the Ca addition. The improvement in creep properties is attributed to the reduction in the amount of Mg17 Al12 phase and the formation of(Mg,Al)2 Ca phase with high thermal stability. According to the obtained creep data, it is concluded that the pipe diffusion-climb controlled dislocation creep is the dominant creep mechanism and Ca addition has no influence on this mechanism. The effect of pre-deformation on the creep properties of AZ61+3%Ca alloy reveals that the creep resistance of the alloy depends on the continuity of(Mg,Al)2 Ca phase. It is decreased by reducing the phase continuity.展开更多
The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the a...The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67 ×10^-8 to 1.43 × 10^-8 s^-1. The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.展开更多
The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to t...The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.展开更多
The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloy...The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloys exposed in flame environment;and both electrical and induction furnaces.Moreover,the surface layers were characterized using field emission scanning electron microscopy,and X-ray diffraction technique.It was found that increasing the Ca addition reduces the grain size and increases the fraction of the secondary phases,and enhances the mechanical properties.Moreover,increasing the Ca contents resulted in the formation of a dense CaO/MgO layer on the surface prohibited the oxygen diffusion and assisted in protection of the substrate against further oxidation.Therefore,ignition temperature was increased from 680℃ to 890℃ after addition of the Ca element.The mechanical properties and ignition behavior of the current materials was compared with the literature which it showed an excellent combination of the properties in the developed alloys.展开更多
The effect of Ca addition on the solidification microstructure of hypoeutectic Al-Si casting alloys was investigated using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) methods with pa...The effect of Ca addition on the solidification microstructure of hypoeutectic Al-Si casting alloys was investigated using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) methods with particular attention focused on the change of morphologies of primary α-Al and eutectic silicon. Meanwhile,solute distribution in solid-liquid was simulated according to Scheil-Gulliver law. Results showed that primary α-Al and eutectic silicon were refined as Ca content increased because of the variation of the solute concentration in liquid. The addition of Ca increased the nucleation sites like Al3Ti or Al2Cu to promote the nucleation of primary α-Al. Affected by modification effect of Ca, the shape of eutectic silicon changed from flake to fibrous structure. In addition, coarse plate Ca-rich phases could be found along the grain boundary with high Ca content.展开更多
The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside gra...The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.展开更多
The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grai...The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.展开更多
Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the inter...Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.展开更多
Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These ...Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties.展开更多
文摘Catalysts with varying Fe contents were prepared using a sequential impregnation method to investigate the effects of Fe addition on the physicochemical properties of Pt/Al_(2)O_(3) and their performance in methylcyclohexane(MCH)dehydrogenation.The results demonstrated that the addition of Fe to Pt/Al_(2)O_(3) enhanced the electron density of Pt and improved catalytic activity,while exhibiting negligible influence on the catalytic selectivity for toluene.When the Fe content was 0.057%,the catalyst exhibited the highest MCH consumption rate,which was approximately two times higher than that of the catalyst without Fe.Additionally,the incorporation of Fe inhibited the formation of coke and reduced the quantity of coke deposits on the catalyst,thereby improving its catalytic durability.Overall,Fe shows promise as a prospective secondary element for Pt/Al_(2)O_(3) to enhance the MCH dehydrogenation performance.
基金Project(51204003)supported by the National Natural Science Foundation of ChinaProject(KJ2011A051)supported by the Scientific Research Foundation of Education Department of Anhui Province,China
文摘The mechanical properties and texture of AM60(Mg-6.0Al-0.3Mn,mass fraction %) and ZXM200(Mg-1.6Zn-0.5Ca-0.2Mn) Mg alloys subjected to multi-pass hot rolling were investigated.The finer recrystallized grains usually exhibit particular preferred orientations and then alter the total texture feature of rolled sheets.Ca solid solution into Mg matrix serves to the formation of texture component with c-axis rotated away from normal direction towards transverse direction and then weakens the overall texture intensity,resulting in a similar anisotropic characteristic to RE-containing Mg alloys.
基金Project (2010ZDJH10) supported by the Nanjing University of Science and Technology Research Funding, ChinaProject (BK2007213) supported by the Natural Science Foundation of Jiangsu Province, China
文摘The CuZrAl bulk metallic glass with minor-addition of Fe was prepared by rapid quenching method. The structures were examined by X-ray diffraction (XRD). The effect of Fe on the glass-forming ability was studied by differential scanning calorimetry (DSC). The minor-addition of Fe obviously extends the supercooled liquid region ΔTx. The plastic strain of the Cu44Zr48Al7Fe bulk metallic glass is about 1.5%. The microstructures were examined by transmission electron microscopy (TEM). It is found that when 1%-2% Fe (mole fraction) were introduced into the CuZrAl alloy matrix, nanoscale phase separation occurs in the as-prepared Cu44Zr48Al7Fe bulk metallic glass.
文摘The effect of Ca addition on modification of primary Mg_(2)Si,hardness and wear behavior in Mg-5 wt.%Si hypereutectic alloy has been investigated.The results showed clearly that without Ca addition,most of primary Mg_(2)Si appeared as coarse dendritic morphology with average size of about 215μm.With the addition of 0.1 wt.%Ca,the average size of primary Mg_(2)Si decreased to about 98μm,but their morphologies did not significantly changed.As the addition level of Ca increased to 0.3 wt.%,the average size of primary Mg_(2)Si decreased significantly to about 50μm and their morphologies changed to polyhedral shape.However,with further increasing Ca addition to 0.6 wt.%and 1 wt.%,some needle-like and blocky CaMgSi particles formed and the average size of primary Mg_(2)Si increased slightly,which could described as over-modification.The present work showed that the optimal modification effect could be obtained when the Ca content in the investigated alloy reached 0.3 wt.%.The modification mechanism may be referred mainly due to poisoning effect resulting from the segregation of Ca atoms at the growth front of the Mg_(2)Si and the adsorption effect of some Ca atoms in the Mg_(2)Si crystal growth plane.The 0.3 wt.%Ca-added alloy has the highest hardness value and the best wear resistance among all other alloys.An excessive Ca addition resulted in the formation of some needle-like and blocky CaMgSi particles,which was detrimental to hardness and wear behavior of the 0.6 wt.%and 1 wt.%Ca-added alloys.The wear mechanism of investigated alloys is a mild abrasive oxidative wear with little adhesion.
文摘Microstructure and creep properties of AZ61 alloy containing 1 and 3 wt.% Ca were investigated. The creep properties were examined using impression method under different stresses between 200 and 500 MPa at the temperature ranging from 423 to 491 K. The microstructure of AZ61 alloy contains α(Mg) matrix and Mg17 Al12 intermetallic phases. It is shown that adding Ca to AZ61 alloy reduces the amount of Mg17 Al12 phase via forming(Mg,Al)2 Ca phase;furthermore, increasing the Ca content to 3 wt.% leads to the formation of(Mg,Al)2 Ca phase, as well as the elimination of the Mg17 Al12 phase. Creep properties of AZ61 alloy are improved with the Ca addition. The improvement in creep properties is attributed to the reduction in the amount of Mg17 Al12 phase and the formation of(Mg,Al)2 Ca phase with high thermal stability. According to the obtained creep data, it is concluded that the pipe diffusion-climb controlled dislocation creep is the dominant creep mechanism and Ca addition has no influence on this mechanism. The effect of pre-deformation on the creep properties of AZ61+3%Ca alloy reveals that the creep resistance of the alloy depends on the continuity of(Mg,Al)2 Ca phase. It is decreased by reducing the phase continuity.
基金supported by the National Natural Science Foundation of China (No.50725413)the National Basic Research Program of China (No.2007CB613704)the Chongqing Education Commission,China (No.KJ090628)
文摘The effect of Ca addition on the as-cast micmstructure and creep properties of Mg-5Zn-5Sn magnesium alloy was investigated. The results indicate that adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can effectively refine the as-cast microstructure of the alloy, and the CaMgSn phase with high thermal stability is formed in the alloy. In addition, adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy can also improve the creep properties of the alloy. After adding 1.0 wt.% Ca to Mg-5Zn-5Sn alloy, the second creep rate of the alloy at 150℃ and 50 MPa for 100 h decreases from 4.67 ×10^-8 to 1.43 × 10^-8 s^-1. The strengthening mechanism is mainly attributed to the microstructural refinement and the formation of CaMgSn phase.
基金Project(50725413) supported by the National Natural Science Foundation of ChinaProject (2007CB613704) supported by the National Basic Research Program of China Projects(2006AA4012-9-6,2007BB4400) supported by Chongqing Science and Technology Commission,China
文摘The effects of Ca addition on the as-cast microstructure and mechanical properties of the Mg-5Zn-5Sn (mass fraction,%) alloy were investigated.The results indicate that an addition of 0.5%-1.5% (mass fraction) Ca to the Mg-5Zn-5Sn alloy not only refines the as-cast microstructure of the alloy but also causes the formation of the primary and/or eutectic CaMgSn phases with high thermal stability;an increase in Ca amount from 0.5% to 1.5% (mass fraction) increases the amount and size of the CaMgSn phase.In addition,Ca addition to the Mg-5Zn-5Sn alloy improves not only the tensile properties at room temperature and 150 ℃ but also the creep properties.Among the Ca-containing Mg-5Zn-5Sn alloys,the one added 0.5% (mass fraction) Ca obtains the optimum ultimate tensile strength and elongation at room temperature and 150 ℃,however,the alloy added 1.5% (mass fraction) Ca exhibits the optimum yield strength and creep properties.
基金the Advanced Research and Technology of Magnesium (ARTofMag) research core for their help and support for this study.
文摘The effects of Ca addition on the microstructure and oxidation properties of a new Mg alloy were studied.The oxidation behavior of the alloys was analyzed by thermal analysis and material characterization of the alloys exposed in flame environment;and both electrical and induction furnaces.Moreover,the surface layers were characterized using field emission scanning electron microscopy,and X-ray diffraction technique.It was found that increasing the Ca addition reduces the grain size and increases the fraction of the secondary phases,and enhances the mechanical properties.Moreover,increasing the Ca contents resulted in the formation of a dense CaO/MgO layer on the surface prohibited the oxygen diffusion and assisted in protection of the substrate against further oxidation.Therefore,ignition temperature was increased from 680℃ to 890℃ after addition of the Ca element.The mechanical properties and ignition behavior of the current materials was compared with the literature which it showed an excellent combination of the properties in the developed alloys.
基金financially supported by the National Natural Science Foundation of China(Grant No.51775297)the National Science and the Tsinghua University Initiative Scientific Research Program(20151080370)the UK Royal Academy of Engineering/Royal Society through the Newton International Fellowship Scheme
文摘The effect of Ca addition on the solidification microstructure of hypoeutectic Al-Si casting alloys was investigated using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) methods with particular attention focused on the change of morphologies of primary α-Al and eutectic silicon. Meanwhile,solute distribution in solid-liquid was simulated according to Scheil-Gulliver law. Results showed that primary α-Al and eutectic silicon were refined as Ca content increased because of the variation of the solute concentration in liquid. The addition of Ca increased the nucleation sites like Al3Ti or Al2Cu to promote the nucleation of primary α-Al. Affected by modification effect of Ca, the shape of eutectic silicon changed from flake to fibrous structure. In addition, coarse plate Ca-rich phases could be found along the grain boundary with high Ca content.
文摘The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300801)the National Natural Science Foundation of China(Nos.51871029,51571023,and 51301016)+2 种基金Beijing Natural Science Foundation(No.2172038)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation(No.FRF-SD-B-005B)The China Scholarship Council for financial support to M.X.Guo
文摘The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.
基金Funded by the National Natural Science Foundation of China(No.51571080)
文摘Overcasting is a new kind of dissimilar joining technique used to produce the aluminum(solid)/magnesium(liquid) bonding bi-metallic material in this study. For the Al/Mg(A390/AM60) bi-metallic samples, the interface microstructures are the research points, which directly influence the mechanical properties. It is, therefore, of vital importance to find a method to improve the interface microstructures. This research focused on the effect of the calcium(Ca) addition in the liquid Mg alloys and the heat treatment on the A390/AM60 interface microstructures of the bi-metallic samples. The testing results showed that, with Ca addition in AM60, owing to two possible reasons, the interface microstructure and the shear strength of the A390/AM60 bi-metallic samples could be improved. The heat treatment could further improve the interface microstructure and the mechanical properties by dissolving β-Mg_(17)Al_(12) into α-Mg and destroying the Mg_2Si layer structure.
文摘Ternary Al-4.5 (wt%) Cu-3.4 (wt%) Fe in-situ composite was prepared at 1100°C by conventional casting method. However, this particular alloy contains larger needle-shaped intermetallics of Al3Fe phase. These exert adverse effect on the mechanical properties of the alloys. The larger shape and uneven orientation of the intermetallic were found to be responsible for the degradation of properties. The main purpose of this study was to modify the geometry of those needles by adding magnesium (Mg) as a fourth material. A series of alloys were prepared by adding 4, 6, 8, 10, wt% Mg in Al-4.5 (wt%) Cu-3.4 (wt%) Fe alloy. Microstructures were observed by optical microscopy. Mechanical properties like ultimate tensile strength, % elongation, % area reduction, hardness and wear test were determined. The study revealed that Mg transformed the needles of Al3Fe into globular shape which gave the alloys better mechanical properties.