稀土钢连铸过程中,结晶器内上浮至渣金界面的高熔点稀土夹杂物如果不能被保护渣有效的溶解吸收,进入保护渣后会改变渣的理化性能,影响连铸顺行。通过高温实验研究了CeAlO_(3)在连铸保护渣中的溶解机制,探究了保护渣w(CaO)/w(Al_(2)O_(3...稀土钢连铸过程中,结晶器内上浮至渣金界面的高熔点稀土夹杂物如果不能被保护渣有效的溶解吸收,进入保护渣后会改变渣的理化性能,影响连铸顺行。通过高温实验研究了CeAlO_(3)在连铸保护渣中的溶解机制,探究了保护渣w(CaO)/w(Al_(2)O_(3))(简写为C/A)对溶解过程的影响。实验结果表明,Ce AlO_(3)溶解过程中,夹杂物-渣界面会形成Ce^(3+)和Ca^(2+)的浓度边界层。在C/A为0.8的保护渣中会形成中间产物CaCeAl_(3)O_(7),随着C/A增加到1.0,中间产物Ca Ce Al_(3)O_(7)减少;继续增加C/A至1.2,中间产物消失。其溶解机制为,低C/A渣中AlO_(4)^(5-)较多,在浓度边界层中Ce AOl3溶解形成的Ce^(3+)与渣中Ca^(2+)、Al O45-反应生成中间产物Ca Ce Al_(3)O_(7),然后中间产物再向渣中溶解,溶解方式为间接溶解。高C/A渣中AlO_(4)^(5-)较少,不足以达到固相形核浓度而形成中间产物,Ce AlO_(3)通过离子扩散溶解于渣中。因此,当保护渣C/A低于或等于1,CeAlO_(3)在渣中的溶解方式为间接溶解,当保护渣C/A超过1时,Ce AlO_(3)在渣中的溶解方式转变为直接溶解。展开更多
文摘稀土钢连铸过程中,结晶器内上浮至渣金界面的高熔点稀土夹杂物如果不能被保护渣有效的溶解吸收,进入保护渣后会改变渣的理化性能,影响连铸顺行。通过高温实验研究了CeAlO_(3)在连铸保护渣中的溶解机制,探究了保护渣w(CaO)/w(Al_(2)O_(3))(简写为C/A)对溶解过程的影响。实验结果表明,Ce AlO_(3)溶解过程中,夹杂物-渣界面会形成Ce^(3+)和Ca^(2+)的浓度边界层。在C/A为0.8的保护渣中会形成中间产物CaCeAl_(3)O_(7),随着C/A增加到1.0,中间产物Ca Ce Al_(3)O_(7)减少;继续增加C/A至1.2,中间产物消失。其溶解机制为,低C/A渣中AlO_(4)^(5-)较多,在浓度边界层中Ce AOl3溶解形成的Ce^(3+)与渣中Ca^(2+)、Al O45-反应生成中间产物Ca Ce Al_(3)O_(7),然后中间产物再向渣中溶解,溶解方式为间接溶解。高C/A渣中AlO_(4)^(5-)较少,不足以达到固相形核浓度而形成中间产物,Ce AlO_(3)通过离子扩散溶解于渣中。因此,当保护渣C/A低于或等于1,CeAlO_(3)在渣中的溶解方式为间接溶解,当保护渣C/A超过1时,Ce AlO_(3)在渣中的溶解方式转变为直接溶解。