Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber ste...Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber stems in this family. Reviewing the previous reports of cambial variants in angiosperm liana families, a list of angiosperm liana families processing specified types of cambial variants and the terms based on description for the transverse section of a stem were provided. The results show that Cocculus laurifolius DC. is a shrub, Stephania cephalantha Hayata and Stephania longa Lour. are vines, and the remaining 13 species are lianas. In all species, the climbing mode was twining and dextrorse stems. The anomalous structure of the stem comprised successive cambia in Cocculus laurifolius, a combination of xylem in plates and dissected xylem in Cocculus orbiculatus (L.) DC., and xylem in plates in the remaining 14 species. In the genus Cyclea, parenchyma proliferation from the secondary xylem resulted in the development of 1 - 3 linear lobes in each collateral vascular bundle. The vessel diameter of C. laurifolius is <50 μm which is the smallest size due to shrub in its life stage. C. orbiculatus had the longest collateral vascular bundles, longest rays and widest rays. Cyclea ochiaiana (Yamam.) S. F. Huang & T. C. Huang had the widest collateral vascular bundles. Sinomenium acutum (Thunb.) Rehder & E. H. Wilson had the highest vessel density. Tinospora crispa (L.) Hook. F. et Thoms develops blunt tubercles on the epidermis and Stephania tetrandra S. Moore bears conspicuous phellem layer. Those findings, such as the climbing mode, the features of parenchyma proliferation, the features of collateral vascular bundles (number, width, length), dimorphic vessels, and size and density of vessels, highlight new anatomical characteristics for species identification in the Menispermaceae in Taiwan.展开更多
Cambial activity is a prerequisite for secondary growth in plants; however, regulatory factors controlling the activity of the secondary meristem in radial growth remain elusive. Here, we identified INCREASED CAMBIAL ...Cambial activity is a prerequisite for secondary growth in plants; however, regulatory factors controlling the activity of the secondary meristem in radial growth remain elusive. Here, we identified INCREASED CAMBIAL ACTIVITY (ICA), a gene encoding a putative pectin methyltransferase, which could function as a modulator for the meristematic activity of fascicular and interfascicular cambium in Arabidopsis. An overexpressing transgenic line, 35S:'1CA, showed accelerated stern elongation and radial thickening, resulting in increased accumulation of biomass, and increased levels of cytokinins (CKs) and gibberellins (GAs). Expression of genes encoding pectin methylesterases involved in pectin modification together with pectin methyltransferases was highly induced in 355::ICA, which might contribute to an increase of methanol emission as a byproduct in 35S:ICA. Methanol treatment induced the expression of GA- or CK-responsive genes and stimulated plant growth. Overall, we propose that ectopic expression of ICA increases cambial activity by regulating CK and GA homeostasis, and methanol emission, eventually leading to stem elongation and radial growth in the inflorescence stem.展开更多
Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reacti...Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation.展开更多
文摘Anatomical data regarding the climbing modes and cambial variants of the stem transverse section in the Menispermaceae in Taiwan are lacking. Here, we examined the climbing modes and anomalous structure of climber stems in this family. Reviewing the previous reports of cambial variants in angiosperm liana families, a list of angiosperm liana families processing specified types of cambial variants and the terms based on description for the transverse section of a stem were provided. The results show that Cocculus laurifolius DC. is a shrub, Stephania cephalantha Hayata and Stephania longa Lour. are vines, and the remaining 13 species are lianas. In all species, the climbing mode was twining and dextrorse stems. The anomalous structure of the stem comprised successive cambia in Cocculus laurifolius, a combination of xylem in plates and dissected xylem in Cocculus orbiculatus (L.) DC., and xylem in plates in the remaining 14 species. In the genus Cyclea, parenchyma proliferation from the secondary xylem resulted in the development of 1 - 3 linear lobes in each collateral vascular bundle. The vessel diameter of C. laurifolius is <50 μm which is the smallest size due to shrub in its life stage. C. orbiculatus had the longest collateral vascular bundles, longest rays and widest rays. Cyclea ochiaiana (Yamam.) S. F. Huang & T. C. Huang had the widest collateral vascular bundles. Sinomenium acutum (Thunb.) Rehder & E. H. Wilson had the highest vessel density. Tinospora crispa (L.) Hook. F. et Thoms develops blunt tubercles on the epidermis and Stephania tetrandra S. Moore bears conspicuous phellem layer. Those findings, such as the climbing mode, the features of parenchyma proliferation, the features of collateral vascular bundles (number, width, length), dimorphic vessels, and size and density of vessels, highlight new anatomical characteristics for species identification in the Menispermaceae in Taiwan.
基金the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010953022016)” Rural Development Administration, Korea
文摘Cambial activity is a prerequisite for secondary growth in plants; however, regulatory factors controlling the activity of the secondary meristem in radial growth remain elusive. Here, we identified INCREASED CAMBIAL ACTIVITY (ICA), a gene encoding a putative pectin methyltransferase, which could function as a modulator for the meristematic activity of fascicular and interfascicular cambium in Arabidopsis. An overexpressing transgenic line, 35S:'1CA, showed accelerated stern elongation and radial thickening, resulting in increased accumulation of biomass, and increased levels of cytokinins (CKs) and gibberellins (GAs). Expression of genes encoding pectin methylesterases involved in pectin modification together with pectin methyltransferases was highly induced in 355::ICA, which might contribute to an increase of methanol emission as a byproduct in 35S:ICA. Methanol treatment induced the expression of GA- or CK-responsive genes and stimulated plant growth. Overall, we propose that ectopic expression of ICA increases cambial activity by regulating CK and GA homeostasis, and methanol emission, eventually leading to stem elongation and radial growth in the inflorescence stem.
基金Supported by the Postdoctoral Fellowship from Japan Society for the Promotion of Science (JSPS) and the Grant-in-Aid for JSPS Fellows (17- 05202).Publication of this paper is supported by the National Natural Science Foundation of China (30624808) and Science Publication Foundation of the Chinese Academy of Sciences.
文摘Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation.