期刊文献+
共找到184篇文章
< 1 2 10 >
每页显示 20 50 100
Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling 被引量:20
1
作者 Quan Xie Wanmei He +3 位作者 Shengwei Liu Chuanhao Li Jinfeng Zhang Po Keung Wong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第1期140-153,共14页
Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combi... Although both the aerobic photocatalytic oxidation of organic pollutants into CO2 and the anaerobic photocatalytic reduction of CO2 into solar fuels have been intensively studied,few efforts have been devoted to combining these carbon-involved photocatalytic oxidation-reduction processes together,by which an artificial photocatalytic carbon cycling process can be established.The key challenge lies in the exploitation of efficient bifunctional photocatalysts,capable of triggering both aerobic oxidation and anaerobic reduction reactions.In this work,a bifunctional ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst is successfully constructed,which not only demonstrates superior aerobic photocatalytic oxidation performance in degrading an organic pollutant(using the dye,Rhodamine B as a model),but also exhibits impressive photocatalytic CO2 reduction performance under anaerobic conditions.Moreover,a direct conversion of Rhodamine B to solar fuels in a one-pot anaerobic reactor can be achieved with the as-prepared ternary g-C3N4/Bi/BiVO4 hybrid photocatalyst.The excellent bifunctional photocatalytic performance of the g-C3N4/Bi/BiVO4 photocatalyst is associated with the formation of efficient S-scheme hybrid junctions,which contribute to promoting the appropriate charge dynamics,and sustaining favorable charge potentials.The formation of the S-scheme heterojunction is supported by scavenger studies and density functional theory calculations.Moreover,the in-situ formed plasmonic metallic Bi nanoparticles in the S-scheme hybrid g-C3N4/Bi/BiVO4 photocatalyst enhances vectorial interfacial electron transfer.This novel bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalyst system provides new insights for the further development of an integrated aerobic-anaerobic reaction system for photocatalytic carbon cycling. 展开更多
关键词 S-scheme Plasmonic Bi nanoparticles Photocatalytic CO2 reduction Photocatalytic degradation of organic pollutants carbon cycling
下载PDF
Evolutionof Sustainable Carbon Cycling Processes in China
2
作者 Zhuang Yahui, Zhang Hongxun,Wang Xiaoke & Fang JinyunResearch Center for Eco-Environmental Sciences(RCEES),Chinese Academy of Sciences,PO Box 2871,Beijing 100085,ChinaDepartment of Urban Ecology,Peking University ,Beijing 100871,China 《Chinese Journal of Population,Resources and Environment》 2004年第2期4-10,共7页
This report summarizes the surveys on carbon inventories and initiatives on sustainable carbon cycling taken by RCEES. The first part of this report deals with the concept of sustainable carbon cycling, the historical... This report summarizes the surveys on carbon inventories and initiatives on sustainable carbon cycling taken by RCEES. The first part of this report deals with the concept of sustainable carbon cycling, the historical evolution of carbon cycling processes in China, carbon pool enhancement, value addition, carbon sequestration and carbon balance. The second part covers the modeling of carbon dynamics, emission inventories of various carbon containing greenhouse gases and their potential abatement measures. 展开更多
关键词 sustainable development carbon cycle carbon pool carbon sequestration
下载PDF
Warming and increased precipitation alter soil carbon cycling in a temperate desert steppe of Inner Mongolia
3
作者 Mu Lan Xiao Qiu +4 位作者 Wei La Huimin Wang Yahong Liu Liqing Zhao Hailian Sun 《Journal of Plant Ecology》 SCIE CSCD 2024年第2期161-172,共12页
Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional gene... Warming and precipitation are key global change factors driving soil carbon(C)dynamics in terrestrial ecosystems.However,the effects of warming and altered precipitation on soil microbial diversity and functional genes involved in soil C cycling remain largely unknown.We investigated the effects of warming and increased precipitation on soil C cycling in a temperate desert steppe of Inner Mongolia using metagenomic sequencing.We found that warming reduced plant richness,Shannon-Wiener and Simpson index.In contrast,increased precipitation signifcantly infuenced Shannon-Wiener and Simpson index.Warming reduced soil microbial species by 5.4%while increased precipitation and warming combined with increased precipitation led to increases in soil microbial species by 23.3%and 2.7%,respectively.The relative abundance of Proteobacteria,which involve C cycling genes,was signifcantly increased by warming and increased precipitation.Warming signifcantly reduced the abundance of GAPDH(Calvin cycle)and celF(cellulose degradation)while it enhanced the abundance of glxR(lignin degradation).Increased precipitation signifcantly enhanced the abundance of pgk(Calvin cycle),coxL(carbon monoxide oxidation),malZ(starch degradation),and mttB(methane production).Moreover,a wide range of correlations among soil properties and C cycling functional genes was detected,suggesting the synergistic and/or antagonistic relationships under scenario of global change.These results may suggest that warming is benefcial to soil C storage while increased precipitation negatively affects soil C sequestration.These fndings provide a new perspective for understanding the response of microbial communities to warming and increased precipitation in the temperate desert steppe. 展开更多
关键词 carbon cycling desert steppe functional genes global change soil microbes PRECIPITATION WARMING
原文传递
New perspectives on deep carbon cycling
4
作者 Weidong SUN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第8期2411-2422,共12页
The proto-atmosphere serves as a crucial starting point for the carbon cycle.Estimations based on atmospheric data from Mars and Venus suggest that Earth's proto-atmosphere contained>110 bar of CO_(2)and>2.6... The proto-atmosphere serves as a crucial starting point for the carbon cycle.Estimations based on atmospheric data from Mars and Venus suggest that Earth's proto-atmosphere contained>110 bar of CO_(2)and>2.6 bar of nitrogen.The protoatmosphere had over 1000 bar of water vapor during the magma ocean stage,assuming the proto-ocean had a volume of two oceans of water.During this stage both water and carbon dioxide were in a supercritical state at the magma-atmosphere interface.Intense serpentinization reactions occurred due to rock-water interaction,producing abundant hydrogen.Consequently,nitrogen is reduced to ammonia,and carbon dioxide to methane,forming carbonate simultaneously.The proto-atmosphere dominated by methane,ammonia,and hydrogen formed a significant amount of amino acids through lightning.This process is essential not only to the origin of life,but also to the early carbon-nitrogen cycle on Earth.By the Hadean eon,a large amount of CO_(2)was sequestered as carbonate and organic material.Subsequently,it mainly entered the deep mantle through mantle overturn or subduction.In the mantle transition zone,carbonate undergoes“Redox freezing”,where carbonate is reduced to diamond through oxidation of ferrous iron in the melt.In the lower mantle,Fe^(2+)undergoes disproportionation reactions,forming Fe^(3+)and metallic iron.Among these,Fe^(3+)mainly resides in bridgmanite,thereby increasing the oxygen fugacity of the lower mantle,while metallic iron falls to the Earth's core.The distribution of carbon in the mantle is crucial for deep carbon cycling.The density curves of diamond and mantle peridotite melt intersect at the bottom of the mantle transition zone(about 660 km).This density crossover leads to the accumulation of diamond during the magma ocean stage.When materials such as subducting slabs enter the lower mantle,compensatory upwelling of lower mantle material occurs.Bridgmanite enters the upper mantle,decomposes,releasing Fe^(3+)ions and oxidizes diamond to carbonate,which under thermal disturbance from kimberlite and igneous carbonatites,moves upward.This carbonate layer may have caused significant topographic fluctuations at the 660 km boundary.Currently,diamond in this layer may still not have been completely oxidized to carbonate or carbon dioxide,serving as a redox buffering layer.This is a key factor in constraining deep carbon cycling.Subduction zones are important pathways for facilitating the cycling.Processes in the Earth's deep carbon cycle significantly influence the carbon content of surface reservoirs.The fluctuations in atmospheric CO_(2)content since the Neogene are closely linked to the uplift of the Tibetan Plateau and the subduction of the western Pacific Plate.Around 60 million years ago,the closure of the Neo-Tethys Ocean led to subduction of the Indian passive margin.The massive sediments on the Indian margin carried down large amounts of carbonate and organic material into the mantle,and the resulting volcanism released large amounts of greenhouse gases such as CO_(2)and methane into the atmosphere.The subduction of the Neo-Tethys Ocean passive margin weakened at about 51 Ma,and subduction of the western Pacific began.The depth of the western Pacific Ocean generally exceeds the carbonate compensation depth,and the amount of carbonate carried by subducting oceanic crust is minimal.Consequently,the input of subducted carbonate decreased significantly,leading to a substantial reduction in CO_(2)emissions from volcanoes.Based on volcanic data from the past12,000 years,the average rate of volcanic eruptions in subduction zones is estimated to be about 3 cubic kilometers per year.The weathering rate of volcanic ash is much higher than that of continental crust materials such as granite.The calcium,magnesium,and other ions provided by weathering of global volcanic ash are equivalent to the flux of global rivers into the oceans.The increase in volcanic ash and the decrease in CO_(2)emissions from subduction zones have led to a decrease in atmospheric CO_(2)levels,which is a key factor in the sustained global cooling since 51 million years ago. 展开更多
关键词 carbon cycling Proto-atmosphere Amino acids Subduction initiation Passive margin subduction Atmospheric carbon dioxide
原文传递
Review of drought impacts on carbon cycling in grassland ecosystems 被引量:6
5
作者 Tianjie LEI Jie FENG +8 位作者 Cuiying ZHENG Shuguang LI Yang WANG Zhitao WU Jingxuan LU Guangyuan KAN Changliang SHAO Jinsheng JIA Hui CHENG 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第2期462-478,共17页
Grasslands play a key role in both carbon and water cycles.In semi-arid and arid grassland areas,the frequency and intensity of droughts are increasing.However,the influence of a drought on grassland carbon cycling is... Grasslands play a key role in both carbon and water cycles.In semi-arid and arid grassland areas,the frequency and intensity of droughts are increasing.However,the influence of a drought on grassland carbon cycling is still unclear.In this paper,the relationship between drought and grassland carbon cycling is described from the perspective of drought intensity,frequency,duration,and timing.Based on a large amount of literature,we determined that drought is one of the most prominent threats to grassland carbon cycling,although the impacts of different drought conditions are uncertain.The effects of a drought on grassland carbon cycling are more or less altered by drought-induced disturbances,whether individually or in combination.Additionally,a new conceptual model is proposed to better explain the mechanism of droughts on grassland carbon cycling.At present,evaluations of the effects of droughts on grassland carbon cycling are mainly qualitative.A data fusion model is indispensable for evaluating the fate of carbon cycling in a sustainable grassland system facing global change.In the future,multi-source data and models,based on the development of single and multiple disturbance experiments at the ecosystem level,can be utilized to systematically evaluate drought impacts on grassland carbon cycling at different timescales.Furthermore,more advanced models should be developed to address extreme drought events and their consequences on energy,water,and carbon cycling. 展开更多
关键词 DROUGHT carbon cycling grasslands conceptual model interactive mechanisms data fusion
原文传递
Effects of water level alteration on carbon cycling in peatlands 被引量:4
6
作者 Yehui Zhong Ming Jiang Beth A.Middleton 《Ecosystem Health and Sustainability》 SCIE 2020年第1期199-227,198,共30页
Globally,peatlands play an important role in the carbon(C)cycle.High water level is a key factor in maintaining C storage in peatlands,but water levels are vulnerable to climate change and anthropogenic disturbance.Th... Globally,peatlands play an important role in the carbon(C)cycle.High water level is a key factor in maintaining C storage in peatlands,but water levels are vulnerable to climate change and anthropogenic disturbance.This review examines literature related to the effects of water level alteration on C cycling in peatlands to summarize new ideas and uncertainties emerging in this field.Peatland ecosystems maintain their function by altering plant community structure to adapt to changing water levels.Regarding primary production,woody plants are more productive in unflooded,well-aerated conditions,while Sphagnum mosses are more productive in wetter conditions.The responses of sedges to water level alteration are species-specific.While peat decomposition is faster in unflooded,well aerated conditions,increased plant production may counteract the C loss induced by increased ecosystem respiration(ER)for a period of time.In contrast,rising water table maintains anaerobic conditions and enhances the role of the peatland as a C sink.Nevertheless,changes in DOC flux during water level fluctuation is complicated and depends on the interactions of flooding with environment.Notably,vegetation also plays a role in C flux but particular species vary in their ability to sequester and transport C.Bog ecosystems have a greater resilience to water level alteration than fens,due to differences in biogeochemical responses to hydrology.The full understanding of the role of peatlands in global C cycling deserves much more study due to uncertainties of vegetation feedbacks,peat-water interactions,microbial mediation of vegetation,wildfire,and functional responses after hydrologic restoration. 展开更多
关键词 PEATLANDS carbon cycling climate change anthropogenic disturbance water level
原文传递
Lateral downslope transport and tentative sedimentary organic carbon box model in the southern Yap Trench,western Pacific Ocean 被引量:1
7
作者 Dong Li Jun Zhao +2 位作者 Chenggang Liu Jianming Pan Ji Hu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第1期61-74,共14页
Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were... Sediment collapse and subsequent lateral downslope migration play important roles in shaping the habitats and regulating sedimentary organic carbon(SOC)cycling in hadal trenches.In this study,three sediment cores were collected using a human-occupied vehicle across the axis of the southern Yap Trench(SYT).The total organic carbon(TOC)and total nitrogen(TN)contents,δ13C,radiocarbon ages,specific surface areas,and grain size compositions of sediments from three cores were measured.We explored the influence of the lateral downslope transport on the dispersal of the sediments and established a tentative box model for the SOC balance.In the SYT,the surface TOC content decreased with water depth and was decoupled by the funneling effect of the V-shaped hadal trench.However,the sedimentation(0.0025 cm/a)and SOC accumulation rates(∼0.038 g/(m^(2)·a)(in terms of OC))were approximately 50%higher in the deeper hadal region than in the abyssal region(0.0016 cm/a and∼0.026 g/(m^(2)·a)(in terms of OC),respectively),indicating the occurrence of lateral downslope transport.The fluctuating variations in the prokaryotic abundances and the SOC accumulation rate suggest the periodic input of surficial sediments from the shallow region.The similar average TOC(0.31%–0.38%),TN(0.06%–0.07%)contents,and SOC compositions(terrestrial OC(11%–18%),marine phytoplanktonic OC(45%–53%),and microbial OC(32%–44%))of the three sites indicate that the lateral downslope transport has a significant mixing effect on the SOC composition.The output fluxes of the laterally transported SOC(0.44–0.56 g/(m^(2)·a)(in terms of OC))contributed approximately(47%–73%)of the total SOC input,and this proportion increased with water depth.The results of this study demonstrate the importance of lateral downslope transport in the spatial distribution and development of biomes. 展开更多
关键词 southern Yap Trench sedimentary organic carbon cycling lateral downslope transport diluting effect box model
下载PDF
Estimating Carbon Capture Potential of Fallow Weeds in Rice Cropping Systems
8
作者 Ge Chen Yuling Kang +2 位作者 Fangbo Cao Jiana Chen Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期71-77,共7页
Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sa... Weeds occurred during the fallow season can well perform the function of carbon(C)capture due to receiving little human disturbance.This study aimed to evaluate the C capture potential of fallow weeds in rice(Oryza sativa L.)cropping systems.A six-region,two-year on-farm investigation and a three-year tillage experiment were conducted to estimate C capture in fallow weeds in rice cropping systems.The on-farm investigation showed that the average mean C capture by fallow weeds across six regions and two years reached 112 g m^(-2).The tillage experiment indicated that no-tillage practices increased C capture by fallow weeds by 80%on average as compared with conventional tillage.The results of this study not only contribute to an understanding of C capture potential of fallow weeds in rice cropping systems,but also provide a reference for including fallow weeds in the estimation of vegetative C sink. 展开更多
关键词 carbon cycling fallow weeds NO-TILLAGE rice cropping system vegetative carbon sink
下载PDF
The Paleoproterozoic and Neoproterozoic Carbon Cycle Promoted the Evolution of a Habitable Earth 被引量:1
9
作者 LIU Zhicheng ZHANG Lifei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期316-326,共11页
The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open quest... The carbon cycle is an important process that regulates Earth's evolution.We compare two typical periods,in the Paleoproterozoic and Neoproterozoic,in which many geological events occurred.It remains an open question when modern plate tectonics started on Earth and how it has influenced the carbon cycle through time.In the Paleoproterozoic,intense weathering in a highly CO_(2)and CH_(4)rich atmosphere caused more nutritional elements to be carried into the ocean.Terrestrial input boosted high biological productivity,deposition of sediments and the formation of an altered oceanic crust,which may have promoted an increase in the oxygen content.Sediment lubrication and a decrease in mantle potential temperature made cold and deep subduction possible,which carried more carbon into the deep mantle.Carbon can be stored in the mantle as diamond and carbonated mantle rocks,being released by arc and mid-ocean ridge outgassing at widely different times.From the Paleoproterozoic through the Neoproterozoic to the Phanerozoic,the carbon cycle has promoted the evolution of a habitable Earth. 展开更多
关键词 carbon cycle great oxidation event modern subduction PALEOPROTEROZOIC NEOPROTEROZOIC
下载PDF
Coral reef ecological pump for gathering and retaining nutrients and exporting carbon:a review and perspectives 被引量:1
10
作者 Linbin Zhou Yehui Tan Liangmin Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期1-15,共15页
How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems.Increasing evidence shows that similar to water in an oas... How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems.Increasing evidence shows that similar to water in an oasis in the desert,there are stable nutrient supplies to coral reefs in oligotrophic oceans.Here,with emphasis on the fluxes of organic matter,we summarize at the ecosystem level(1)the multiple input pathways of external nutrients,(2)the storage of nutrients in reef organisms,(3)the efficient retaining and recycling of dissolved and particulate organic matter within coral reef ecosystems,(4)the distinctly high phytoplankton productivity and biomass inside and near oceanic coral reefs,and(5)the export of reef-related organic carbon to adjacent open oceans.These properties enable coral reefs to function as ecological“pumps”for gathering nutrients across ecosystems and space,retaining and recycling nutrients within the ecosystem,supporting high phytoplankton productivity,and exporting organic carbon to adjacent open oceans.Particularly,the high phytoplankton productivity and biomass make waters around coral reefs potential hotspots of carbon export to ocean depths via the biological pump.We demonstrate that organic carbon influx is vital for coral reef ecosystems’carbon budget and carbon export.The concept of the coral reef ecological pump provides a framework to improve the understanding of the functioning of the coral reef ecosystem and its responses to disturbance.Prospects of the coral reef ecological pump in coral reef studies are discussed in changing oceans driven by human activities and global change in the Anthropocene. 展开更多
关键词 Darwin’s Paradox coral reef NUTRIENTS coral reef ecological pump carbon export ocean carbon cycle
下载PDF
Thinning intensity aff ects carbon sequestration and release in seasonal freeze–thaw areas 被引量:1
11
作者 Tong Gao Xinyu Song +3 位作者 Yunze Ren Hui Liu Hangfeng Qu Xibin Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期993-1006,共14页
To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varyi... To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%. 展开更多
关键词 Forest carbon cycle Seasonal freeze–thaw THINNING Climate change
下载PDF
Effects of Spin Transition and Cation Substitution on the Optical Properties and Iron Partitioning in Carbonate Minerals
12
作者 HU Jun XU Liangxu +1 位作者 LIU Jin YUE Donghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期350-357,共8页
The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate c... The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate change.Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa.Mg-substitution in high-spin siderite FeCO_(3)increases the crystal field absorption band position by approximately 1000 cm^(-1),but such an effect is marginal at>40 GPa when entering the low-spin state.The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but,in contrast,the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than(Mg,Fe)CO_(3)in the lowspin state by 2000–2500 cm^(-1).Additionally,these carbonate minerals show more complicated features for the absorption edge,decreasing with pressure and undergoing a dramatic change through the spin crossover.The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition,indicating that iron is preferentially partitioned into low-spin carbonates.These results shed new light on how carbonate minerals evolve in the mantle,which is crucial to decode the deep carbon cycle. 展开更多
关键词 carbonate petrology/mineralogy MANTLE high pressure diamond-anvil cell iron spin transition iron partitioning deep carbon cycle
下载PDF
δ^(13)C_(org) perturbations preserved by the interglacial Datangpo Formation in South China with implications for stratigraphic correlation and carbon cycle
13
作者 Xian-yin An Yu-jie Zhang +5 位作者 Li Tian Shi-lei Liu Qi-yu Wang Yong Du Hu-yue Song Jun Hu 《China Geology》 CAS CSCD 2023年第3期420-428,共9页
Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle... Palaeoclimatic and palaeoenvironmental reconstructions of the Cryogenian Period have attracted attention in relation to the debated“Snowball Earth”hypothesis and the early evolution of metazoan life.The carbon cycle and redox conditions of the Sturtian-Marinoan non-glacial interval have been subjected to much controversy in the past decades because of the lack of a high-resolution stratigraphic correlation scheme.As one of the typical Sturtian-Marinoan interglacial deposits,the Datangpo Formation was widely distributed in South China with shales continuously deposited.The previous zircon dating data of the Datangpo Formation provide important ages for global constrain of the Sturtian-Marinoan non-glacial interval.Here we present a high-resolution straitigraphic study of the organic carbon isotopes of the Datangpo Formation from a drill core section in northern Guizhou Province.Based on measured episodicδ^(13)C_(org) perturbations,three positive shifts and three negative excursions are identified.Aδ^(13)C_(org)-based chemostratigraphic correlation scheme is proposed herein that works well for the Datangpo Formation regionally.Meanwhile,theδ^(13)C_(org) vertical gradients changed dynamically throughout the formation.This discovery implies that a significant ocean circulation overturn might have occurred in the upper Datangpo Formation,coinciding with the potential oxygenation. 展开更多
关键词 Organic carbon isotope carbon cycle INTERGLACIAL Palaeoenvironmental reconstruction Cryogenian Period Snowball Earth Neoproterozoic Era Datangpo Formation Geological survey engineering South China Plate
下载PDF
Cadaverine and putrescine exposure influence carbon and nitrogen cycling genes in water and sediment of the Yellow River
14
作者 Wanghong Su Qiaoling Yu +6 位作者 Jiawei Yang Qian Han Sijie Wang Petr Hedenec Xiaochen Wang Ruijun Wan-Yan Huan Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第8期236-247,共12页
The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences.However,the response mechanisms and pathways of the functional... The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences.However,the response mechanisms and pathways of the functional genes associated with the carbon(C)and nitrogen(N)cycling to cadaveric substances such as cadaverine and putrescine remain unclear.This study explored the variation of functional genes associated with C fixation,C degradation and N cycling and their influencing factors under cadaverine,putrescine and mixed treatments.Our results showed only putrescine significantly increased the alpha diversity of C fixation genes,while reducing the alpha diversity of N cycling genes in sediment.For the C cycling,the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes(i.e.,acsB and acsE)and lig gene linked to lignin degradation in water,while only significantly increasing the hydroxypropionate-hydroxybutylate cycle(i.e.,accA)gene abundance in sediment.For the N cycling,mixed treatment significantly decreased the abundance of the nitrification(i.e.,amoB),denitrification(i.e.,nirS3)genes in water and the assimilation pathway gene(i.e.,gdhA)in sediment.Environmental factors(i.e.,total carbon and total nitrogen)were all negatively associated with the genes of C and N cycling.Therefore,cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling,while promoting C degradation.These findings can offer some new insight for the management of amine pollution caused by animal cadavers. 展开更多
关键词 carbon cycling Nitrogen cycling CADAVERINE PUTRESCINE Pollution management
原文传递
Carbon distribution and fluxes of 16 rivers discharging into the Bohai Sea in summer 被引量:9
15
作者 XIA Bin ZHANG Longjun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2011年第3期43-54,共12页
Riverine carbon input is closely related to the inshore aquatic environment, the marine carbon pool and climate change. Samples were synchronously obtained from 16 rivers discharging into the Bohai Sea (China) in 1-... Riverine carbon input is closely related to the inshore aquatic environment, the marine carbon pool and climate change. Samples were synchronously obtained from 16 rivers discharging into the Bohai Sea (China) in 1-5 July 2005. The dissolved organic carbon (DOC) concentrations of the 16 rivers were mainly controlled by anthropogenic activities. The particulate organic carbon (POC) of the Haihe, Luanhe, Ziyaxinhe, Chaobaixinhe, Xiaoqinghe, Xiaolinghe, Duliujianhe, Jiyunhe, and Majiahe Rivers mainly originated from pollutants discharged by human, while that of the Huanghe River (Yellow River), Daliaohe, Shuangtaizihe, Tuhaihe, Dalinghe, Daqinghe, and Liuguhe Rivers were generated mainly by soil erosion. Higher dissolved inorganic carbon (DIC) concentrations in the 16 rivers were detected, which were influenced by the large amounts of carbonate and industrial pollution. The estimated DOC, POC and DIC fluxes from the 16 rivers discharging into the Bohai Sea in summer, 2005 were 0.91×10^5, 1.23×10^5 and 6.31×10^5t, respectively. 展开更多
关键词 Bohai Sea carbon fluxes dissolved organic carbon particulate organic carbon carbon cycling sources
下载PDF
Effect of fire disturbance on active organic carbon of Larix gmelinii forest soil in Northeastern China 被引量:3
16
作者 Xin Lu Haiqing Hu Long Sun 《Journal of Forestry Research》 SCIE CAS CSCD 2017年第4期763-774,共12页
Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs freq... Active organic carbon in soil has high biological activity and plays an important role in forest soil ecosystem structure and function. Fire is an important disturbance factor in many forest ecosystems and occurs frequently over forested soils. However, little is known about its impact on soil active organic carbon (SAOC), which is important to the global carbon cycle. To investigate this issue, we studied the active organic carbon in soils in the Larix gmelinii forests of the Da Xing'an Mountains (Greater Xing'an Mountains) in Northeastern China, which had been burned by high-intensity wildfire in two different years (2002 and 2008). Soil samples were collected monthly during the 2011 growing season from over 12 sample plots in burned and unburned soils and then analyzed to examine the dynamics of SAOC. Our results showed that active organic carbon content changed greatly after fire disturbance in relation to the amount of time elapsed since the fire. There were significant differences in microbial biomass carbon, dissolved organic carbon, light fraction organic carbon, particulate organic carbon between burned and unburned sample plots in 2002 and 2008 (p < 0.05). The correlations between active organic carbon and environmental factors such as water content, pH value and temperature of soils, and correlations between each carbon component changed after fire disturbance, also in relation to time since the fire. The seasonal dynamics of SAOC in all of the sample plots changed after fire disturbance; peak values appeared during the growing season. In plots burned in 2002 and 2008, the magnitude and occurrence time of peak values differed. Our findings provide basic data regarding the impact of fire disturbance on boreal forest soil-carbon cycling, carbon-balance mechanisms, and carbon contributions of forest ecosystem after wildfire disturbance. 展开更多
关键词 Boreal forest carbon cycling Da Xing'an Mountains FIRE Soil active organic carbon
下载PDF
SEASONAL CHANGES OF DISSOLVED AND PARTICULATE ORGANIC CARBON IN DONGHU LAKE,CHINA 被引量:3
17
作者 刘学君 徐小清 +1 位作者 谢平 Noriko Takamura 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2000年第4期372-377,共6页
Concentrations of dissolved and particulate organic carbon (DOC and POC) were documented in 1996-1997 at 4 different trophic state stations in Donghu Lake, a typical shallow eutrophic lake along the Changjiang River’... Concentrations of dissolved and particulate organic carbon (DOC and POC) were documented in 1996-1997 at 4 different trophic state stations in Donghu Lake, a typical shallow eutrophic lake along the Changjiang River’s middle reaches. The mean concentrations of DOC were 15.11±3.26, 15.19±4.24, 14.27±3.43, and 13.31±3.30 mg/L in Station I, II, III, and IV, respectively. The DOC concentrations of the studied area were very similar to that in other lakes along the Changjiang River’s middle reaches. The POC mean of the whole lake was 5.01 mg/L due to the large amount of organic detritus of both allochthonous and autochthonous origin. Significant linear relationship was found between POC and chlorophyll a at all 4 stations, which presumably reflect that phytoplankton, its exudates and its metabolic products were the main contributors to the POC pool in the water column. The slope of such linear relationship at Station IV was significantly steeper than that at Station I, II and III. In addition, the DOC/POC ratios (mean value: 4.40) indicated that the organic detritus was the most important component of the particulate organic matter; in other words, next to organic detritus, phytoplankton dominated the particulate organic matter in Donghu Lake. 展开更多
关键词 dissolved organic carbon particulate organic carbon carbon constituents carbon cycling Donghu Lake
原文传递
Forms and functions of inorganic carbon in the Jiaozhou Bay sediments 被引量:1
18
作者 LI Xuegang SONG Jinming YUAN Huamao LINing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第6期30-41,共12页
Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be... Inorganic carbon forms and their influencing factors, mutual transformation and contribution to carbon cycling in the Jiaozhou Bay sediments were discussed. The results show that inorganic carbon in sediments could be divided into five forms: NaCl form, NH3-H20 form, NaOH form, NH20H-HCl form and HCI form. Thereinto, NH2OH.HCl form and HCl form account for more than 70% of total inorganic carbon. There was close relationship among every form of inorganic carbon and their correlativity was clearly different with different sedimentary environment except the similar strong positive correlation among NH-OH-HCl form, HCl form and total inorganic carbon in all regions of the Jiaozhou Bay. All forms of inorganic carbon were influenced by organic carbon, pH, Eh, Es, nitrogen and phosphorus in sediments, but their influence had different characteristics in different regions. Every form of inorganic carbon transformed into each other continuously during early diagenesis of sediments and the common phenomenon was that NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form might transform into steady HCl form. NaCl form, NH3-H2O form, NaOH form and NH2OH-HCl form could participate in carbon recycle and they are potential carbon source; HCl form may be buried for a long time in sediments, and it may be one of the final resting places of atmospheric C02. Inorganic carbon which entered into sediments was about 4.98× 1010 g in the Jiaozhou Bay every year, in which about 1.47×1010 g of inorganic carbon might be buried for a long time and about 3.51 × 1010 g of inorganic carbon might return into seawater and take part in carbon recycling. 展开更多
关键词 different forms of inorganic carbon marine carbon cycling the Jiaozhou Bay sediments
下载PDF
Spatiotemporal Variability and Environmental Controls of Temperature Sensitivity of Ecosystem Respiration across the Tibetan Plateau
19
作者 Danrui SHENG Xianhong MENG +8 位作者 Shaoying WANG Zhaoguo LI Lunyu SHANG Hao CHEN Lin ZHAO Mingshan DENG Hanlin NIU Pengfei XU Xiaohu WEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1821-1842,共22页
Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of... Warming-induced carbon loss via ecosystem respiration(R_(e))is probably intensifying in the alpine grassland ecosystem of the Tibetan Plateau owing to more accelerated warming and the higher temperature sensitivity of R_(e)(Q_(10)).However,little is known about the patterns and controlling factors of Q_(10)on the plateau,impeding the comprehension of the intensity of terrestrial carbon-climate feedbacks for these sensitive and vulnerable ecosystems.Here,we synthesized and analyzed multiyear observations from 14 sites to systematically compare the spatiotemporal variations of Q_(10)values in diverse climate zones and ecosystems,and further explore the relationships between Q_(10)and environmental factors.Moreover,structural equation modeling was utilized to identify the direct and indirect factors predicting Q_(10)values during the annual,growing,and non-growing seasons.The results indicated that the estimated Q_(10)values were strongly dependent on temperature,generally,with the average Q_(10)during different time periods increasing with air temperature and soil temperature at different measurement depths(5 cm,10 cm,20 cm).The Q_(10)values differentiated among ecosystems and climatic zones,with warming-induced Q_(10)declines being stronger in colder regions than elsewhere based on spatial patterns.NDVI was the most cardinal factor in predicting annual Q_(10)values,significantly and positively correlated with Q_(10).Soil temperature(Ts)was identified as the other powerful predictor for Q_(10),and the negative Q_(10)-Ts relationship demonstrates a larger terrestrial carbon loss potentiality in colder than in warmer regions in response to global warming.Note that the interpretations of the effect of soil moisture on Q_(10)were complicated,reflected in a significant positive relationship between Q_(10)and soil moisture during the growing season and a strong quadratic correlation between the two during the annual and non-growing season.These findings are conducive to improving our understanding of alpine grassland ecosystem carbon-climate feedbacks under warming climates. 展开更多
关键词 carbon cycle eddy covariance measurements ecosystem respiration Q_(10)value Tibetan Plateau climate change
下载PDF
Stoichiometric flexibility regulates the co-metabolism effect during organic carbon mineralization in eutrophic lacustrine sediments
20
作者 Jie MA Fei HE +7 位作者 Xingcheng YAN Ruijie SHI Ming JI Bin XU Xiaodong WU Zhichun LI Xiaoguang XU Guoxiang WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第5期1974-1984,共11页
Several studies have suggested the pivotal roles of eutrophic lakes in carbon(C)cycling at regional and global scales.However,how the co-metabolism effect on lake sediment organic carbon(OC)mineralization changes in r... Several studies have suggested the pivotal roles of eutrophic lakes in carbon(C)cycling at regional and global scales.However,how the co-metabolism effect on lake sediment organic carbon(OC)mineralization changes in response to integrated inputs of labile OC and nutrients is poorly understood.This knowledge gap hinders our ability to predict the carbon sequestration potential in eutrophic lakes.Therefore,a 45-day microcosm experiment was conducted to examine the dominant mechanisms that underpin the co-metabolism response to the inputs of labile C and nutrients in lacustrine sediments.Results indicate that the labile C addition caused a rapid increase in the positive co-metabolism effect during the initial stage of incubation,and the co-metabolism effect was positively correlated with the C input level.The positive co-metabolism effect was consistently higher under high C input,which was 152%higher than that under low C input.The higherβ-glucosidase activity after nutrient addition,which,in turn,promoted the OC mineralization in sediments.In addition different impacts of nutrients on the co-metabolism effect under different C inputs were observed.Compared with the low nutrient treatments,the largest co-metabolism effect under high C with high nutrient treatment was observed by the end of the incubation.In the high C treatment,the intensity of the co-metabolism effect(CE)under high nitrogen treatment was 1.88 times higher than that under low nitrogen condition.However,in the low C treatment,the amount of nitrogen had limited impact on co-metabolism effect.Our study thus proved that the microorganisms obviously regulate sediment OC turnover via stoichiometric flexibility to maintain a balance between resources and microbial requirements,which is meaningful for evaluating the OC budget and lake eutrophication management in lacustrine sediments. 展开更多
关键词 co-metabolism effect STOICHIOMETRIC carbon cycling eutrophic lake decomposition organic carbon
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部