期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests 被引量:1
1
作者 Zhiyong Qi Shiming Li +3 位作者 Yong Pang Guang Zheng Dan Kong Zengyuan Li 《Forest Ecosystems》 SCIE CSCD 2023年第5期547-560,共14页
Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change m... Assessing the changes in forest carbon stocks over time is critical for monitoring carbon dynamics,estimating the balance between carbon uptake and release from forests,and providing key insights into climate change mitigation.In this study,we quantitatively characterized spatiotemporal variations in aboveground carbon density(ACD)in boreal natural forests in the Greater Khingan Mountains(GKM)region using bi-temporal discrete aerial laser scanning(ALS)data acquired in 2012 and 2016.Moreover,we evaluated the transferability of the proposed design model using forest field plot data and produced a wall-to-wall map of ACD changes for the entire study area from 2012 to 2016 at a grid size of 30 m.In addition,we investigated the relationships between carbon dynamics and the dominant tree species,age groups,and topography of undisturbed forested areas to better understand ACD variations by employing heterogeneous forest canopy structural characteristics.The results showed that the performance of the temporally transferable model(R^(2)=0.87,rRMSE=18.25%),which included stable variables,was statistically equivalent to that obtained from the model fitted directly by the 2016 field plots(R^(2)=0.87,rRMSE=17.47%).The average rate of change in carbon sequestration across the entire study region was 1.35 Mg⋅ha^(-1)⋅year^(-1) based on the changes in ALS-based ACD values over the course of four years.The relative change rates of ACD decreased as the elevation increased,with the highest and lowest ACD growth rates occurring in the middle-aged and mature forest stands,respectively.The Gini coefficient,which represents forest canopy surface structure heterogeneity,is sensitive to carbon dynamics and is a reliable predictor of the relative change rate of ACD.This study demonstrated the applicability of bi-temporal ALS for predicting forest carbon dynamics and fine-scale spatial change patterns.Our research contributed to a better understanding of the in-fluence of remote sensing-derived environmental variables on forest carbon dynamic patterns and the development of context-specific management approaches to increase forest carbon stocks. 展开更多
关键词 Aboveground carbon density Bi-temporal ALS carbon dynamics Temporal transferability Gini coefficient
下载PDF
Carbon pool structure and carbon density of soil in Pinus koraiensis plantation ecosystem 被引量:4
2
作者 丁壮 张彦东 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期177-182,I0005,共7页
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s... The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability. 展开更多
关键词 soil carbon pool soil carbon density soil carbon content Pinus koraiensis plantation ecosystem mixed forest
下载PDF
Regional Differences and Characteristics of Soil Organic Carbon Density Between Dry Land and Paddy Field in China 被引量:5
3
作者 XU Quan RUI Wen-yi BIAN Xin-min ZHANG Wei-jian 《Agricultural Sciences in China》 CAS CSCD 2007年第8期981-987,共7页
Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selecti... Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selection and policy making for carbon sequestration in soils. Based on the second national soil survey of China, the situation of SOC density in the plow layer of farmland was analyzed under different land use patterns. Results showed that SOC density in the plow layer was about 3.15 kg m^-2 in average ranging from 0.81 to 12.68 kg m^-2. The highest density was found in the southeastern region with an average of 3.63 kg ma, while the lowest occurring in the northwestern region with an average of 3.00 kg m^-2. The variation coefficient of SOC density in the plow layer of farmland was 57%, which was 35% lower than that of non-farmland soils. Compared to SOC density in the dry land, SOC density in paddy soils was 13% higher with a lower variation coefficient between different regions. In addition, the relationships between the climatic factors (annual average temperature and precipitation) and SOC density were lower in farmland than those in non-farmland soils, as well as lower in paddy soils than those in dry land of farmland. These results suggest that anthropogenic disturbances have great impacts on SOC density in farmland soils, especially in paddy soils, indicating that Chinese rice cropping may contribute greatly to the SOC stability and sequestration in paddy field. 展开更多
关键词 land use pattern organic carbon density carbon sequestration regional difference global change
下载PDF
Spatial Pattern of Forest Carbon Storage and Carbon Density in the Kanas National Natural Reserve
4
作者 LIU Hua BAI Zhiqiang +2 位作者 FANG Yue ZHANG Fan HAN Yanliang 《Journal of Landscape Research》 2015年第6期38-41,共4页
Based on the sub-forest management inventory, volume-derived biomass and mean biomass, carbon storage and its spatial distribution of forest vegetation in Kanas National Nature Reserve(hereinafter referred to as the R... Based on the sub-forest management inventory, volume-derived biomass and mean biomass, carbon storage and its spatial distribution of forest vegetation in Kanas National Nature Reserve(hereinafter referred to as the Reserve) were calculated. The results showed that carbon storage of forest vegetation in the Reserve was 3.004 7 Tg C, mean carbon density was 49.58 Mg C/hm^2; carbon storage of different vegetation types: forest land >shrubbery > open forest > scattered trees, among which carbon storage of forest land accounted for 90.18% of the total carbon storage of the forest vegetation, and mean carbon density of forest land was 68.87 Mg C/hm^2; in terms of regional distribution, spatial distribution of carbon storage and carbon density declined from southwest to northeast; in the Reserve, carbon storage of mature and over-mature forest stands accounted for 79.89% of carbon storage of forest land. If scientifi c management is applied, carbon sequestration capacity of forest will be improved. 展开更多
关键词 Forest vegetation carbon storage carbon density Kanas National Nature Reserve
下载PDF
The Influencing Factors of Soil Organic Carbon Density in Lanlingxi Watershed in Three Gorges Reservoir Area
5
作者 Yaowu TIAN 《Asian Agricultural Research》 2017年第5期74-77,89,共5页
To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adju... To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adjust carbon sink strategy in this region,soil samples of top soil profile( 0-30 cm) in five land use types were selected by the typical method. The SOC density of top soil profile( 0-30 cm) and other environmental factors,such as elevation,slope and aspect and soil properties in five land use types,including grassland,scrubland,woodland,land for tea plantation and farmland in the watershed was investigated. The relationship of SOC density with physical properties of soil was also examined. The SOC density of the above five land use types averaged 7. 55,3. 83,6. 04,10. 24,2. 83 kg·m^(-2),respectively. There was a significant difference in the SOC density( p < 0. 01); SOC density was significantly positively correlated with organic matter content( R= 0. 942,p < 0. 01),clay mass percentage( R = 0. 898,p < 0. 01),total nitrogen( R = 0. 863,p < 0. 01),elevation( R = 0. 599,p < 0. 01); SOC density was significantly negatively correlated with sand content( R =-0. 932,p < 0. 01) and slope( R =-0. 407,p < 0. 05); and the correlation between SOC density and soil p H,total phosphorus or total potassium was not obvious. Multiple correlation coefficient R = 0. 986( R > 0. 8,highly correlated) between SOC density and environmental factors was greater than the correlation coefficient between any one independent variable and dependent variable,which fully proved the combined effect of environmental factors on SOC density. 展开更多
关键词 Three Gorges Reservoir Area Soil organic carbon density Influencing factors
下载PDF
Aboveground carbon sequestration of Cunninghamia lanceolata forests:Magnitude and drivers 被引量:1
6
作者 Chen Wang Shuguang Liu +3 位作者 Yu Zhu Andrew R.Smith Ying Ning Deming Deng 《Forest Ecosystems》 SCIE CSCD 2024年第1期32-41,共10页
Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio... Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests. 展开更多
关键词 carbon density carbon accumulation rate Forest age Spatial variation Cultural influence
下载PDF
Historical Changes and Multi-scenario Prediction of Land Use and Terrestrial Ecosystem Carbon Storage in China
7
作者 AN Yue TAN Xuelan +2 位作者 REN Hui LI Yinqi ZHOU Zhou 《Chinese Geographical Science》 SCIE CSCD 2024年第3期487-503,共17页
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R... Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets. 展开更多
关键词 land use change Future Land Use Simulation(FLUS)model carbon storage carbon density dataset land use scenario China
下载PDF
Estimation of Storage and Density of Organic Carbon in Peatlands of China 被引量:7
8
作者 LIU Zigang WANG Ming MA Xuehui 《Chinese Geographical Science》 SCIE CSCD 2012年第6期637-646,共10页
Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.T... Based on the results of the National Survey of Peat Resources(1983-1985) and the investigation results on the peatlands of China,the storage and density of the organic carbon in the peatlands of China were estimated.The total organic carbon storage(OCS) of the peatlands in China,including bare peatlands and buried peatlands,are 1.503 × 109 t,unevenly distributed over 30 provincial level administrative units and 16 climatic zones.Peatland organic carbon storage(POCS) in Sichuan(6.45 × 108 t) and Yunnan provinces(2.91 × 108 t) is the highest,accounting for 62.29% of the total POCS.Humid zone of plateau has the highest POCS of 7.14 × 108 t,especially in the Zoigê Plateau,where the POCS is 6.30 × 108 t,accounting for 41.92% of the total POCS of China.The organic carbon density(OCD) of the peatlands in China mostly ranges from 80 kg/m3 to 140 kg/m3,and the range of the maximum is 270-360 kg/m3,and the minimum is less than 80 kg/m3.Divided by the Yanshan Mountain,Taihang Mountains and Hengduan Mountains,the peatland oganic carbon density(POCD) is lower on the northwestern side than that on the southeastern side.Jiangxi Province has the highest POCD due to the ancient buried peatlands.The OCD of the bare peatlands is mostly in the range of 60-150 kg/m3,and that of the buried peatlands is more than 100 kg/m3.In the bare peatlands,the OCD generally increases from the surface layer to the below surface layer,and then decreases with the depth.Although the peatlands area in China is small,the OCS per unit area is far higher than the other soil types,so peatlands protection can effectively mitigate climate change. 展开更多
关键词 PEATLANDS organic carbon storage organic carbon density China
下载PDF
Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage 被引量:6
9
作者 Boyi Liang Jia Wang +4 位作者 Zheyuan Zhang Jia Zhang Junping Zhang Elizabeth L.Cressey Zong Wang 《Fundamental Research》 CAS 2022年第5期688-696,共9页
Over the last several decades,China has taken multiple measures for afforestation and natural forest protection,including setting the goal of carbon neutrality by the middle of 21th century.In order to support the pra... Over the last several decades,China has taken multiple measures for afforestation and natural forest protection,including setting the goal of carbon neutrality by the middle of 21th century.In order to support the practice of relevant policies from the scientific perspective,it is essential to precisely estimate the carbon storage of arbor forest,as it plays an important role in the carbon cycle of ecosystems.In this study,we first used the latest four phases of national forest inventory data to investigate the variation of carbon storage for both natural and planted arbor forest in China during the covered period(1999-2018).Then we used machine leaning methods to simulate the carbon density based on various kinds of environmental factors and analyzed the contribution of each influencing factor.Our results demonstrate that the total carbon storage for arbor forest in China kept increasing over the last two decades,but this increment was mainly brought about by the continuous expansion of forest land.The gap of carbon sequestration between natural forest and planted forest showed a significant trend of reduction.Additionally,tree age was identified as the dominant factor for influencing the spatiotemporal variation of carbon density among all the independent variables while the impact of climatic factor was limited.Therefore,the future improvement of carbon sequestration of arbor forest in should mainly rely on additional projects of afforestation,reforestation,green space conservation and reduction of emissions in China.Conclusions of this study have important implications for policy makers and other stakeholders to evaluate the previous achievement of environmental projects and can also help to set future plans and finally realize the goals of carbon neutrality. 展开更多
关键词 National forestry inventory Forest stand volume carbon storage carbon density Machine learning
原文传递
Implications of Anthropogenic Disturbances for Species Diversity, Recruitment and Carbon Density in the Mid-hills Forests of Nepal 被引量:3
10
作者 Hari Prasad PANDEY 《Journal of Resources and Ecology》 CSCD 2021年第1期1-10,共10页
Almost three-fourths of forests are experiencing anthropogenic disturbances globally, and more than two-thirds of the forests in Nepal receive different types of disturbances. In community forests(CFs), local communit... Almost three-fourths of forests are experiencing anthropogenic disturbances globally, and more than two-thirds of the forests in Nepal receive different types of disturbances. In community forests(CFs), local communities are dependent on the ecosystem services provided by the forests for various aspects of their livelihoods, which disturb the forests’ natural conditions and ecosystem functioning in a variety of ways. This study tested the major disturbance factors that had influential roles on plant species diversity, recruitment(seedlings and saplings), biomass, soil organic carbon(SOC) and total carbon density in two community-managed forests in the Mid-hills of Nepal. The stump number, cut-off seedlings and saplings, lopping, dropping, and grazing/trampling were used as measures of the major anthropogenic disturbances. The necessary data were collected from 89 randomly selected sample plots, each with an area of 250 m2. The responses to anthropogenic disturbances were analyzed using Generalized Linear Models(GLM). The results showed that forest lopping was the most significant anthropogenic disturbance for biomass and total carbon density balance. A higher degree of lopping in the forests resulted in a lowering of the forests’ carbon stock in the study area. SOC showed no significant response to any of the tested anthropogenic disturbances. Woody species richness and number of saplings increased with an increasing number of stumps, which signifies that intermediate disturbance was beneficial. However, a higher intensity of lopping reduced the sapling density. Grazing/trampling was the most significant disturbance for inhibiting seedling growth. Areas in the forests with a higher intensity of trampling showed lower numbers of seedlings and saplings. These results will be a guide for managing anthropogenic disturbances in multiple-use forests in Nepal, as well as those in similar socio-economic environments worldwide. 展开更多
关键词 anthropogenic disturbance biomass carbon density community-managed forest seedlings and saplings woody plants’diversity
原文传递
Spatial Distribution of Surface Soil Organic Carbon Density and Related Factors along an Urbanization Gradient in Beijing 被引量:1
11
作者 TIAN Yuhong LIU Fenghua WANG Tiantian 《Journal of Resources and Ecology》 CSCD 2020年第5期508-515,共8页
Urban surface soil has a unique set of structures and processes that affect surface soil organic carbon density(SOCdensity) and its spatial variations. Using Beijing as a case study, and assisted by field investigatio... Urban surface soil has a unique set of structures and processes that affect surface soil organic carbon density(SOCdensity) and its spatial variations. Using Beijing as a case study, and assisted by field investigations and experiments, we analyzed the spatial distribution of SOCdensity in different land use types and functional regions, and assessed associated factors such as urbanization level, the physiochemical properties of soil and plant configurations. The present study aims to provide useful information about the mechanisms driving soil organic carbon and climate change in developing and developed areas in urbanized regions like Beijing. Results indicate that P is the main factor positively influencing SOCdensity in most regions. Because of the specific interference directly related to human beings in urban areas, with decreases in the urbanization level, more physiochemical factors of soil can influence SOCdensity. SOCdensity under grasses is not significantly different from that under other plant compositions. Urbanization processes decrease the heterogeneity of the spatial pattern of SOCdensity in most land use types, but increased its contents when the area reached a developed level in Beijing. More factors related to human interference and spatial variation of surface soil carbon storage, especially under impervious land in urban areas, should be considered in future studies. 展开更多
关键词 soil organic carbon density URBANIZATION soil physiochemical properties plant configuration
原文传递
Three-dimensional modelling of soil organic carbon density and carbon sequestration potential estimation in a dryland farming region of China 被引量:1
12
作者 SUN Zhongxiang BAI Huiqing +2 位作者 YE Huichun ZHUO Zhiqing HUANG Wenjiang 《Journal of Geographical Sciences》 SCIE CSCD 2021年第10期1453-1468,共16页
Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-... Soil organic carbon density(SOCD)and soil organic carbon sequestration potential(SOCP)play an important role in carbon cycle and mitigation of greenhouse gas emissions.However,the majority of studies focused on a two-dimensional scale,especially lacking of field measured data.We employed the interpolation method with gradient plane nodal function(GPNF)and Shepard(SPD)across a range of parameters to simulate SOCD with a 40 cm soil layer depth in a dryland farming region(DFR)of China.The SOCP was estimated using a carbon saturation model.Results demonstrated the GPNF method was proved to be more effective in simulating the spatial distribution of SOCD at the vertical magnification multiple and search point values of 3.0×106 and 25,respectively.The soil organic carbon storage(SOCS)of 40 cm and 20 cm soil layers were estimated as 22.28×10^(11)kg and 13.12×10^(11)kg simulated by GPNF method in DFR.The SOCP was estimated as 0.95×10^(11)kg considered as a carbon sink at the 20–40 cm soil layer.Furthermore,the SOCP was estimated as–2.49×10^(11)kg considered as a carbon source at the 0–20 cm soil layer.This research has important values for the scientific use of soil resources and the mitigation of greenhouse gas emissions. 展开更多
关键词 soil organic carbon density gradient plane nodal function soil organic carbon storage soil organic carbon sequestration potential
原文传递
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case study in Jiangle County, southeast China 被引量:4
13
作者 Zhuo Lin Lin Chao +3 位作者 Chengzhen Wu Wei Hong Tao Hong Xisheng Hu 《Acta Geochimica》 EI CAS CSCD 2018年第1期90-101,共12页
The mid-subtropical forest is one of the biggest sections of subtropical forest in China and plays a vital role in mitigating climate change by sequestering carbon.Studies have examined carbon storage density(CSD) dis... The mid-subtropical forest is one of the biggest sections of subtropical forest in China and plays a vital role in mitigating climate change by sequestering carbon.Studies have examined carbon storage density(CSD) distribution in temperate forests. However, our knowledge of CSD in subtropical forests is limited. In this study, Jiangle County was selected as a study case to explore geographic variation in CSD. A spatial heterogeneity analysis by semivariogram revealed that CSD varied at less than the mesoscale(approximately 2000–3000 m). CSD distribution mapped using Kriging regression revealed an increasing trend in CSD from west to east of the study area.Global spatial autocorrelation analysis indicated that CSD was clustered at the village level(at 5% significance).Some areas with local spatial autocorrelation were detected by Anselin Local Moran's I and Getis-Ord G*. A geographically weighted regression model showed different impacts on the different areas for each determinant. Generally, diameter at breast height, tree height, and stand density had positive correlation with CSD in Jiangle County, but varied substantially in magnitude by location.In contrast, coefficients of elevation and slope ranged from negative to positive. Based on these results, we propose certain measures to increase forest carbon storage,including increasing forested area, improving the quality of the current forests, and promoting reasonable forest management decisions and harvesting strategies. The established CSD model emphasizes the important role of midsubtropical forest in carbon sequestration and provides useful information for quantifying mid-subtropical forest carbon storage. 展开更多
关键词 carbon storage density GEOSTATISTICS Mid-subtropical forests Spatial autocorrelation Spatial heterogeneity
下载PDF
Spatial-Temporal Changes of Soil Organic Carbon During Vegetation Recovery at Ziwuling, China 被引量:30
14
作者 LI Yu-Yuan SHAO Ming-An +1 位作者 ZHENG Ji-Yong ZHANG Xing-Chang 《Pedosphere》 SCIE CAS CSCD 2005年第5期601-610,共10页
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ... To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment. 展开更多
关键词 soil organic carbon density spatial-temporal change vegetation recovery vegetation succession
下载PDF
Soil Organic Carbon Content and Distribution in a Small Landscape of Dongguan, South China 被引量:22
15
作者 SU Zhi-Yao XIONG Yong-Mei +2 位作者 ZHU Jian-Yun YE Yong-Chang YE Mai 《Pedosphere》 SCIE CAS CSCD 2006年第1期10-17,共8页
Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic c... Global warming has become an increasing concern, and using soil as a carbon sink to sequester carbon dioxide has attracted much attention in recent years. In this study, soil organic carbon (SOC) content and organic carbon density were estimated based on a soil survey of a small landscape in Dongguan, South China, with spatial heterogeneity of SOC distribution and the impacts of land-use patterns on soil organic carbon content assessed. Field sampling was carried out based on a 150 m×150 m grid system overlaid on the topographic map of the study area and samples were collected in three 20-cm layers to a depth of 60 cm. Spatial variability in the distribution of SOC was assessed using the Kruskal-Wallis test. Results showed that SOC in the topsoil layer (0-20 cm) was not much higher or even lower in some sites than the underlying layers, and except for the two sites covered with natural woodland, it did not exhibit a pronounced vertical gradient. The difference in both horizontal and vertical distribution of SOC was not statistically significant. However, in the topsoil layer among land-use/land-cover patterns, significant differences (P≤0.05) in SOC distribution existed, indicating that management practices had great impact on SOC content. SOC storage in the study area to a depth of 20, 40, and 60 cm was estimated as 2.13×106 kg, 3.46×106 kg, and 4.61×106 kg, respectively. 展开更多
关键词 land-use pattern organic carbon content organic carbon density spatial wariability
下载PDF
Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China 被引量:11
16
作者 LIU Wenhui ZHU Jiaojun +4 位作者 JIA Quanquan ZHENG Xiao LI Junsheng LOU Xuedong HU Lile 《Chinese Geographical Science》 SCIE CSCD 2014年第4期444-453,共10页
Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region ... Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region is important for understanding the overall function of carbon sequestration of the forest and other terrestrial ecosystems in China. This study investigated the distribution area of shrubland in the TSF region based on remote sensing images in 1978 and 2008, and calculated the carbon density of shrubland in combination with the field investigation and previous data from published papers. The carbon sequestration quantity and rate from 1978 to 2008 was analyzed for four sub-regions and different types of shrubs in the TSF region. The results revealed that: 1) The area of shrubland in the study area and its four sub-regions increased during the past thirty years. The area of shrubland for the whole region in 2008 was 1.2 × 10^7 ha, 72.8% larger than that in 1978. The Inner Mongolia-Xinjiang Sub-region was the largest shrubland distribution area, while the highest coverage rate was found in the North China Sub-region. 2) In decreasing order of their carbon sequestration, the four types of shrubs considered in this study were Hippophae rhamnoides, Caragana spp., Haloxylon ammodendron and Vitex negundo vat. heterophylla. The carbon sequestration of/-/, rhamnoides, with a maximum mean carbon density of 16.5 Mg C/ha, was significantly higher than that of the other three species. 3) The total carbon sequestration of shrubland in the study region was 4.5 x 107 Mg C with a mean annual carbon sequestration of 1.5× 10^6 Mg C. The carbon density in the four sub-regions decreased in the following order: the Loess Plateau Sub-region, the North China Sub-region, the Northeast China Sub-region and the Inner Mongolia-Xinjiang Sub-region. The paucity of studies and data availability on the large-scale carbon sequestration of shrub species suggests this study provides a baseline reference for future research in this area. 展开更多
关键词 BIOMASS biomass density carbon density carbon sequestration carbon sequestration rate carbon storage Three-NorthShelterbelt Forest (TSF)
下载PDF
Biomass Carbon Sequestration by Planted Forests in China 被引量:9
17
作者 XU Xinliang LI Kerang 《Chinese Geographical Science》 SCIE CSCD 2010年第4期289-297,共9页
The planted forest area and carbon sequestration have increased significantly in China,because of large-scale reforestation and afforestation in the past decades.In this study,we developed an age-based volume-to-bioma... The planted forest area and carbon sequestration have increased significantly in China,because of large-scale reforestation and afforestation in the past decades.In this study,we developed an age-based volume-to-biomass method to estimate the carbon storage by planted forests in China in the period of 1973-2003 based on the data from 1209 field plots and national forest inventories.The results show that the total carbon storage of planted forests was 0.7743 Pg C in 1999-2003,increased by 3.08 times since the early 1970s.The carbon density of planted forests varied from 10.6594 Mg/ha to 23.9760 Mg/ha and increased by 13.3166 Mg/ha from 1973-1976 to 1999-2003.Since the early 1970s,the planted forests in China have been always a carbon sink,and the annual rate of carbon sequestration was 0.0217 Pg C/yr.The carbon storage and densities of planted forests varied greatly in space and time.The carbon storage of Middle South China was in the lead in all regions,which accounted for 23%-36% of national carbon storage.While higher C densities (from 17.79 Mg/ha to 26.05 Mg/ha) were usually found in Northeast China.The planted forests in China potentially have a high carbon sequestration since a large part of them are becoming mature and afforestation continues to grow. 展开更多
关键词 planted forest forest inventory carbon storage carbon density carbon sequestration
下载PDF
Forest Carbon Storage and Tree Carbon Pool Dynamics under Natural Forest Protection Program in Northeastern China 被引量:9
18
作者 WEI Yawei YU Dapao +6 位作者 Bernard Joseph LEWIS ZHOU Li ZHOU Wangming FANG Xiangmin ZHAO Wei WU Shengnan DAI Limin 《Chinese Geographical Science》 SCIE CSCD 2014年第4期397-405,共9页
The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting a... The Natural Forest Protection(NFP) program is one of the Six Key Forestry Projects which were adopted by the Chinese Government since the 1980s to address important natural issues in China. It advanced to protecting and restoring the structures and functions of the natural forests through sustainable forest management. However, the role of forest carbon storage and tree carbon pool dynamics since the adoption of the NFP remains unknown. To address this knowledge gap, this study calculated forest carbon storage(tree, understory, forest floor and soil) in the forest region of northeastern(NE) China based on National Forest Inventory databases and field investigated databases. For tree biomass, this study utilized an improved method for biomass estimation that converts timber volume to total forest biomass; while for understory, forest floor and soil carbon storage, this study utilized forest type-specific mean carbon densities multiplied by their areas in the region. Results showed that the tree carbon pool under the NFP in NE China functioned as a carbon sink from 1998 to 2008, with an increase of 6.3 Tg C/yr, which was mainly sequestrated by natural forests(5.1 Tg C/yr). At the same time, plantations also acted as a carbon sink, reflecting an increase of 1.2 Tg C/yr. In 2008, total carbon storage in forests covered by the NFP in NE China was 4603.8 Tg C, of which 4393.3 Tg C was stored in natural forests and 210.5 Tg C in planted forests. Soil was the largest carbon storage component, contributing 69.5%–77.8% of total carbon storage; followed by tree and forest floor, accounting for 16.3%–23.0% and 5.0%–6.5% of total carbon storage, respectively. Understory carbon pool ranged from 1.9 to 42.7 Tg C, accounting for only 0.9% of total carbon storage. 展开更多
关键词 biomass-volume linear regression models mean carbon density method national forest inventory Key Forestry Projects northeastern China
下载PDF
Estimation of above-ground biomass and carbon stock of an invasive woody shrub in the subtropical deciduous forests of Doon Valley,western Himalaya,India 被引量:8
19
作者 Gautam Mandal S.P.Joshi 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期291-305,共15页
This study describes the different parameters used to derive the allometric equation for calculating the biomass of an invasive woody shrub Lantana camara L.from the subtropical conditions of western Himalaya.It ident... This study describes the different parameters used to derive the allometric equation for calculating the biomass of an invasive woody shrub Lantana camara L.from the subtropical conditions of western Himalaya.It identifies the most accurate and convenient method for biomass calculation by comparing destructive with nondestructive methodology.Different parameters were measured on a wide range of Lantana from different community levels for the non-destructive calculation of total aboveground biomass.Different explanatory variables were identified and measured such as basal diameter either as a single independent variable or in combination with plant height.The other suitable combinations of available independent variables include crown length,crown width,crown area,crown volume and coverage of the plant.Amongst the wide range of allometric equations used with different variables,the equation with D2 H as a variable was found to be the most suitable estimator of biomass calculation for Lantana.Sahastradhara,being the most disturbed area due to its high tourist activity round the year,showed maximum coverage(58.57 % ha-1),highest biomass(13,559.60 kg ha-1) and carbon density(6,373.01 kg ha-1)of Lantana.The degree of Lantana’s invasiveness in subtropical conditions was also calculated on the basis of importance value index(IVI).The maximum IVI(22.77)and mean coverage(26.8 % ha-1) was obtained from the areas near Jolly Grant airport,indicating that physically disturbed areas are more suitable for the growth of Lantana,which may significantly increase shrub biomass.The importance of incorporating allometric equations in calculation of shrub biomass,and its role in atmospheric carbon assimilation has thus been highlighted through the findings of this study. 展开更多
关键词 Above ground carbon pools Allometric regression equations carbon density Importance value index(IVI) Shrub biomass
下载PDF
Response of Artificial Grassland Carbon Stock to Management in Mountain Region of Southern Ningxia, China 被引量:7
20
作者 TANG Long DANG Xiaohu +2 位作者 LIU Guobin SHAO Chuanke XUE Sha 《Chinese Geographical Science》 SCIE CSCD 2014年第4期436-443,共8页
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studi... Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L. (alfalfa) grassland biomass carbon and soil organic carbon density (SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period (viz. 0-10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0-10 year. During 0-30 year, the SOCD from 0-100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for l0 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general. 展开更多
关键词 artificial Medicago sativa L. (alfalfa) grassland clipped grassland abandoned grassland carbon sink carbon density mountain region southern Ningxia
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部