期刊文献+
共找到9,683篇文章
< 1 2 250 >
每页显示 20 50 100
A general descriptor for guiding the electrolysis of CO_(2)in molten carbonate
1
作者 Zhengshan Yang Bowen Deng +2 位作者 Kaifa Du Huayi Yin Dihua Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期748-757,共10页
Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO_(2)to carbonaceous materials.However,the electrolyte–electrode-reaction relationship has not been well understood.Herein,we propose... Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO_(2)to carbonaceous materials.However,the electrolyte–electrode-reaction relationship has not been well understood.Herein,we propose a general descriptor,the CO_(2)activity,to reveal the electrolyte–electrode-reaction relationship by thermodynamic calculations and experimental studies.Experimental studies agree well with theoretical predictions that both cations(Li^(+),Ca^(2+),Sr^(2+)and Ba^(2+))and anions(BO_(2)^(-),Ti_(5)O_(14)^(8-),SiO_(3)^(2-))can modulate the CO_(2)activity to control both cathode and anode reactions in a typical molten carbonate electrolyzer in terms of tuning reaction products and overpotentials.In this regard,the reduction of CO_(3)^(2-)can be interpreted as the direct reduction of CO_(2)generated from the dissociated CO_(3)^(2-),and the CO_(2)activity can be used as a general descriptor to predict the electrode reaction in molten carbonate.Overall,the CO_(2)activity descriptor unlocks the electrolyte–electrode-reaction relationship,thereby providing fundamental insights into guiding molten carbonate CO_(2)electrolysis. 展开更多
关键词 Molten carbonate CO_(2)activity CO_(2)RR Electrolyte engineering CARBON
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
2
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
Impact of effective stress on permeability for carbonate fractured-vuggy rocks
3
作者 Ke Sun Huiqing Liu +5 位作者 Juliana Y.Leung Jing Wang Yabin Feng Renjie Liu Zhijiang Kang Yun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期942-960,共19页
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef... To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs. 展开更多
关键词 Effective stress PERMEABILITY carbonate fractured-vuggy rocks Structure characteristics Stress sensitivity
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand
4
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Mechanical Property and Microstructure of Cement Mortar with Carbonated Recycled Powder
5
作者 丁亚红 张美香 +3 位作者 YANG Xiaolin XU Ping SUN Bo GUO Shuqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期689-697,共9页
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon... Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect. 展开更多
关键词 recycled powder carbonation activation compound carbonation activity index mechanical property MICROSTRUCTURE
原文传递
Carbonation of Dicalcium Silicate Enhanced by Ammonia Bicarbonate and Its Mechanism
6
作者 周浩 刘鹏 +1 位作者 WANG Fazhou HU Chuanlin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期69-74,共6页
The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified ... The strength development law of γ-type dicalcium silicate (γ-C_(2)S) under different carbonation processes was investigated,and the carbonation mechanism of γ-C_(2)S under the action of NH_(4)HCO_(3) was clarified by using a wide range of test methods,including XRD and SEM.A method of saturated NH_(4)HCO_(3) solution as a curing agent was identified to improve the carbonation efficiency and enhance the carbonation degree of γ-C_(2)S,and then a high-strength carbonated specimen was obtained.Microhardness analysis and SEM morphology analysis were conducted on the carbonised specimens obtained under atmospheric pressure carbonisation conditions using the curing agent.It was found that γ-C_(2)S could perform carbonisation well under atmospheric pressure,which promoted the carbonisation efficiency and decreased the carbonisation cost simultaneously.Therefore,a new carbonisation process solution was proposed for the rapid carbonisation of γ-C_(2)S. 展开更多
关键词 type dicalcium silicate carbonization process curing agent atmospheric carbonization
原文传递
Combined effect of bicarbonate and water in photosynthetic oxygen evolution and carbon neutrality 被引量:1
7
作者 Yanyou Wu 《Acta Geochimica》 EI CAS CSCD 2023年第1期77-88,共12页
Carbon neutrality is widely concerned and highly valued by many countries.Biosphere has always maintained the balance between oxidized organic substances and assimilated organic matter,resulting in netzero carbon diox... Carbon neutrality is widely concerned and highly valued by many countries.Biosphere has always maintained the balance between oxidized organic substances and assimilated organic matter,resulting in netzero carbon dioxide(CO_(2)) emissions and maintaining its own carbon neutrality.Nature has set a good example for human beings to coordinate oxygen(O_(2)) balance and CO_(2)balance,and achieve carbon neutrality.How does photosynthetic oxygen evolution initiate carbon and water neutrality?My synthesis shows that photo system Ⅱ functions as carbonic anhydrase to catalyze the reaction of CO_(2)hydration under physiological conditions,and CO_(2)hydration coupled with chemical equilibrium,H^(+)+HCO_(3)^(-)→1/2O_(2)+2e^(-)+2H^(+)+CO_(2),occurs in a photosystem Ⅱ corecomplex.Meanwhile,I focused on the revisiting of four classical heavy oxygen(O^(18)) labeling experiments and found that bicarbonate can promote photo synthetic oxygen evolution,and that photo synthetic oxygen evolution can alternately come from bicarbonate and water,not only water.Bicarbonate photolysis and water photolysis account for half of the photo synthetic oxygen evolution respectively,which can well explain the bicarbonate effect,Dole effect and plants’ environmental adaptability.Photosynthetic oxygen evolution initiated the journey of water metabolism and carbon metabolism in nature,which led to the coupling as 1:1(mol/mol) stoichiometric relationship between the reduction of CO_(2)and oxidation of organic carbon,coordinated the evolution of the atmosphere,hydrosphere,lithosphere and biosphere,and realized "carbon neutrality" in the whole Earth system. 展开更多
关键词 Bicarbonate photolysis Bicarbonate effect Carbonic anhydrase Dole effect Water photolysis Stoichiometric relationship Carbon metabolism
下载PDF
Origin of carbonate minerals and impacts on reservoir quality of the Wufeng and Longmaxi Shale, Sichuan Basin
8
作者 Yang Chen Jian-Hua Zhao +5 位作者 Qin-Hong Hu Ke-Yu Liu Wei Wu c Chao Luo Sheng-Hui Zhao Yu-Ying Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3311-3336,共26页
The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geoch... The Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin were studied to understand the genesis and diagenetic evolution of carbonate minerals and their effects on reservoir quality. The results of geochemical and petrological analyses show that calcite grains have a negative Ce anomaly indicating they formed in the oxidizing environment of seawater. The high carbonate mineral contents in the margin of basin indicate that calcite grains and cores of dolomite grains appear largely to be of detrital origin. The rhombic rims of dolomite grains and dolomite concretions with the δ^(13)C of –15.46‰ and the enrichment of middle rare earth elements were formed during the sulfate-driven anaerobic oxidation of methane. The calcite in radiolarian were related to the microbial sulfate reduction for the abundant anhedral pyrites and δ^(13)C value of –11.34‰. Calcite veins precipitated in the deep burial stage with homogenization temperature of the inclusions ranging from 146.70 ℃ to 182.90 ℃. The pores in shale are mainly organic matter pores with pore size mainly in the range of 1–20 nm in diameter. Carbonate minerals influence the development of pores through offering storage space for organic matter. When calcite contents ranging from 10% to 20%, calcite grains and cement as rigid framework can preserve primary pores. Subsequently, the thermal cracking of liquid petroleum in primary pores will form organic matter pores. The radiolarian were mostly partially filled with calcite, which combining with microcrystalline quartz preserved a high storage capacity. 展开更多
关键词 carbonate minerals genesis Diagenetic evolution carbonate mineral types Reservoir quality Wufeng and Longmaxi Shale
下载PDF
Geotechnical investigation of low-plasticity organic soil treated with nano-calcium carbonate
9
作者 Govindarajan Kannan Brendan C.O’Kelly Evangelin Ramani Sujatha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期500-509,共10页
Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plicati... Soil stabilization using nanomaterials is an emerging research area although,to date,its investigation has mostly been laboratory-based and therefore requires extensive study for transfer to practical field ap-plications.The present study advocates nano-calcium carbonate(NCC)material,a relatively unexplored nanomaterial additive,for stabilization of low-plasticity fine-grained soil having moderate organic content.The plasticity index,compaction,unconfined compressive strength(UCS),compressibility and permeability characteristics of the 0.2%,0.4%,0.6%and 0.8%NCC-treated soil,and untreated soil(as control),were determined,including investigations of the effect of up to 90-d curing on the UCS and permeability properties.In terms of UCS improvement,0.4%NCC addition was identified as the optimum dosage,mobilizing a UCS at 90-d curing of almost twice that for the untreated soil.For treated soil,particle aggregation arising from NCC addition initially produced an increase in the permeability coef-ficient,but its magnitude decreased for increased curing owing to calcium silicate hydrate(CSH)gel formation,although still remaining higher compared to the untreated soil for all dosages and curing periods investigated.Compression index decreased for all NCC-treated soil investigated.SEM micro-graphs indicated the presence of gel patches along with particle aggregation.X-ray diffraction(XRD)results showed the presence of hydration products,such as CSH.Significant increases in UCS are initially attributed to void filling and then because of CSH gel formation with increased curing. 展开更多
关键词 Organic silt Calcium carbonate Nano-calcium carbonate(NCC) Calcium silicate hydrate(CSH) Soil stabilization
下载PDF
Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct 被引量:2
10
作者 Kai Xu Ming Huang +2 位作者 Jiajie Zhen Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期1011-1022,共12页
A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choi... A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation (EICP) Plant-based urease Underground cable duct Foundation reinforcement
下载PDF
Lithium nitrate regulated carbonate electrolytes for practical Li-metal batteries: Mechanisms, principles and strategies 被引量:1
11
作者 Kun Wang Wenbing Ni +9 位作者 Liguang Wang Lu Gan Jing Zhao Zhengwei Wan Wei Jiang Waqar Ahmad Miaomiao Tian Min Ling Jun Chen Chengdu Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期581-600,I0015,共21页
Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),l... Li-metal batteries(LMBs)regain research prominence owing to the ever-increasing high-energy requirements.Commercially available carbonate electrolytes exhibit unfavourable parasitic reactions with Limetal anode(LMA),leading to the formation of unstable solid electrolyte interphase(SEI)and the breed of Li dendrites/dead Li.Significantly,lithium nitrate(LiNO_(3)),an excellent film-forming additive,proves crucial to construct a robust Li_(3)N/Li_(2)O/Li_(x)NO_(y)-rich SEI after combining with ether-based electrolytes.Thus,the given challenge leads to natural ideas which suggest the incorporation of LiNO_(3) into commercial carbonate for practical LMBs.Regrettably,LiNO_(3) demonstrates limited solubility(~800 ppm)in commercial carbonate electrolytes.Thence,developing stable SEI and dendrite-free LMA with the incorporation of LiNO_(3) into carbonate electrolytes is an efficacious strategy to realize robust LMBs via a scalable and cost-effective route.Therefore,this review unravels the grievances between LMA,LiNO_(3)and carbonate electrolytes,and enables a comprehensive analysis of LMA stabilizing mechanism with LiNO_(3),dissolution principle of LiNO_(3) in carbonate electrolytes,and LiNO_(3) introduction strategies.This review converges attention on a point that the LiNO_(3)-introduction into commercial carbonate electrolytes is an imperious choice to realize practical LMBs with commercial 4 V layered cathode. 展开更多
关键词 Li-metal battery carbonate electrolyte Lithium nitrate Stabilization mechanism Dissolution principle Introduction strategy
下载PDF
Ionic liquids-SBA-15 hybrid catalysts for highly efficient and solvent-free synthesis of diphenyl carbonate 被引量:1
12
作者 Songlin Wang Qiying Zhang +3 位作者 Chengxing Cui Hongying Niu Cailing Wu Jianji Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期183-193,共11页
Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a hi... Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates. 展开更多
关键词 Diphenyl carbonate Ionic liquid Mesoporous silica DISPROPORTIONATION Catalytic synthesis
下载PDF
Mechanism of carbonate cementation and its influence on reservoir in Pinghu Formation of Xihu Sag 被引量:1
13
作者 Haiqiang Bai Xiaojun Xie +5 位作者 Gongcheng Zhang Ying Chen Ziyu Liu Lianqiao Xiong Jianrong Hao Xin Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第3期65-75,共11页
Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir.In this paper,Pinghu Formation of Xihu Sag was taken as a target.Characteristics,distribution... Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir.In this paper,Pinghu Formation of Xihu Sag was taken as a target.Characteristics,distribution and formation of carbonate cements were investigated via optical microscopy,cathodoluminescence(CL),electron probe and in-situ carbon-oxygen isotope.The results showed that carbonate cements varied in types and shapes.Calcite/dolomite mainly present as poikilotopic cements,while ferrocalcite/ferrodolomite/ankerite generally present as pore-filling cements.Carbon isotope(δ^(13)C)values of carbonate cements were ranging from–7.77‰to–2.67‰,with an average of–4.52‰,while oxygen isotope(δ^(18)O)values were ranging from–18.94‰to–12.04‰,with an average of–14.86‰.Theδ^(13)C/δ^(18)O indicated that the paleo-fluid of carbonate cement was mainly freshwater.Organic carbon mainly came from organic matter within mature source rocks,and inorganic carbon came from dissolution of carbonate debris and early carbonate cements.Distinctiveδ^(13)C/δ^(18)O values manifest that carbonate cements with different types formed in different periods,which make different contributions to the reservoir properties.Calcite/dolomite formed during eodiagenesis(70–90℃)and early mesodiagenesis stage(90–120℃),and were favorable to reservoir owing to their compacted resistance and selective dissolution.Ferrocalcite/ferrodolomite/ankerite formed during middle-late mesodiagenetic stage(above 120℃),and were unfavorable to reservoir due to cementing the residual intergranular pores.Hence,in order to evaluate the reservoir characteristics,it is of significantly important to distinguish different types of carbonate cements and explore their origins. 展开更多
关键词 carbonate cements genesis mechanism Xihu Sag Pinghu Formation
下载PDF
Quantitative Method of Classification and Discrimination of a Porous Carbonate Reservoir Integrating K-means Clustering and Bayesian Theory
14
作者 FANG Xinxin ZHU Guotao +2 位作者 YANG Yiming LI Fengling FENG Hong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期176-189,共14页
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes... Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir. 展开更多
关键词 UPSTREAM resource exploration reservoir classification carbonate K-means clustering Bayesian discrimination CENOMANIAN-TURONIAN Iraq
下载PDF
Effects of Spin Transition and Cation Substitution on the Optical Properties and Iron Partitioning in Carbonate Minerals
15
作者 HU Jun XU Liangxu +1 位作者 LIU Jin YUE Donghui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第1期350-357,共8页
The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate c... The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle,playing a vital role in the global carbon cycle and potentially influencing long-term climate change.Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa.Mg-substitution in high-spin siderite FeCO_(3)increases the crystal field absorption band position by approximately 1000 cm^(-1),but such an effect is marginal at>40 GPa when entering the low-spin state.The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but,in contrast,the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than(Mg,Fe)CO_(3)in the lowspin state by 2000–2500 cm^(-1).Additionally,these carbonate minerals show more complicated features for the absorption edge,decreasing with pressure and undergoing a dramatic change through the spin crossover.The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition,indicating that iron is preferentially partitioned into low-spin carbonates.These results shed new light on how carbonate minerals evolve in the mantle,which is crucial to decode the deep carbon cycle. 展开更多
关键词 carbonate petrology/mineralogy MANTLE high pressure diamond-anvil cell iron spin transition iron partitioning deep carbon cycle
下载PDF
Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model
16
作者 Jian-Xiang Chen Rui-Yue Yang +4 位作者 Zhong-Wei Huang Xiao-Guang Wu Shi-Kun Zhang Hai-Zhu Wang Feng Ma 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1750-1767,共18页
Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon di... Geothermal energy is a kind of renewable,sustainable and clean energy resource.Geothermal energy is abundant in carbonate reservoirs.However,low matrix permeability limits its exploitation.The super-critical carbon dioxide(SC-CO_(2))jet fracturing is expected to efficiently stimulate the carbonate geothermal reservoirs and achieve the storage of CO_(2) simultaneously.In this paper,we established a transient seepage and fluid-thermo-mechanical coupled model to analyze the impact performance of sc-CO_(2) jet fracturing.The mesh-based parallel code coupling interface was employed to couple the fluid and solid domains by exchanging the data through the mesh interface.The physical properties change of sC-CO_(2) with temperature were considered in the numerical model.Results showed that SC-CO_(2) jet frac-turing is superior to water-jet fracturing with respect to jetting velocity,particle trajectory and pene-trability.Besides,stress distribution on the carbonate rock showed that the tensile and shear failure would more easily occur by SC-CO_(2) jet than that by water jet.Moreover,pressure and temperature control the jet field and seepage field of sC-CO_(2) simultaneously.Increasing the jet temperature can effectively enhance the impingement effect and seepage process by decreasing the viscosity and density of SC-CO_(2).The key findings are expected to provide a theoretical basis and design reference for applying SC-CO_(2) jet fracturing in carbonate geothermal reservoirs. 展开更多
关键词 carbonate Carbon capture utilization and storage(CCUS) Jet fracturing Coupled model Geothermal reservoir
下载PDF
Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors
17
作者 Tengjie Wang Wenkai Li +2 位作者 Xuehui Ge Ting Qiu Xiaoda Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期243-250,共8页
High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the ... High-purity ethylene carbonate(EC)is widely used as battery electrolyte,polycarbonate monomer,organic intermediate,and so on.An economical and sustainable route to synthesize high-purity ethylene carbonate(EC)via the transesterification of dimethyl carbonate(DMC)with ethylene glycol(EG)is provided in this work.However,this reaction is so fast that the reaction kinetics,which is essential for the industrial design,is hard to get by the traditional measuring method.In this work,an easy-to-assemble microreactor was used to precisely determine the reaction kinetics for the fast transesterification of DMC with EG using sodium methoxide as catalyst.The effects of flow rate,microreactor diameter,catalyst concentration,reaction temperature,and reactant molar ratio were investigated.An activity-based pseudohomogeneous kinetic model,which considered the non-ideal properties of reaction system,was established to describe the transesterification of DMC with EG.Detailed kinetics data were collected in the first 5 min.Using these data,the parameters of the kinetic model were correlated with the maximum average error of 11.19%.Using this kinetic model,the kinetic data at different catalyst concentrations and reactant molar ratios were predicted with the maximum average error of 13.68%,suggesting its satisfactory prediction performance. 展开更多
关键词 Microreactor KINETICS Ethylene carbonate synthesis TRANSESTERIFICATION Sodium methoxide
下载PDF
Ultra-deep carbonate basement reservoirs formed by polyphase fracture-related karstification in the Offshore Bohai Bay Basin, China
18
作者 Jian Luo Hai-Yang Cao +5 位作者 Domenico Chiarell Ru-Lin Miao Tao Ye Yun-Long Xu An-Qing Chen Xiao-Ping Luo 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2009-2025,共17页
The Palaeozoic carbonate basement of the Offshore Bohai Bay Basin (OBBB) presents considerable potential for hydrocarbon exploration. However, the multistage tectonism and complex superimposed palaeo-karstification in... The Palaeozoic carbonate basement of the Offshore Bohai Bay Basin (OBBB) presents considerable potential for hydrocarbon exploration. However, the multistage tectonism and complex superimposed palaeo-karstification in the area are unclear, which leads to a lack of understanding on the formation mechanism and distribution of the deep carbonate basement reservoirs. In this study, the occurrence of a fracture-vug network and its fillings in carbonate reservoirs were investigated based on borehole cores, thin sections, and image logs from the southwestern slope of the OBBB's Bozhong Sag. Then the diagenetic fluid properties of the carbonate matrix and fillings were analysed via the data of carbon, oxygen, and strontium isotopes, and major, rare elements from coring intervals. The results revealed that fracture-related karst reservoirs have lithologic selectivity inclined toward dolomite strata. The intersecting relationships, widths, and strikes of the fractures and the regional tectonic background indicate three structural fracture families: NW-, NNE-, and NNW- trending, related to the Indosinian, middle Yanshanian, and late Yanshanian orogeny, respectively. The Indosinian NW- and end-Mesozoic NNE-trending fractures produced by compressional tectonic stress mainly contributed to the formation of the basement reservoirs. The geochemistry of the calcite veins filling these fractures suggests two main types of diagenetic fluids. The fluid of autogenic recharge related to the earlier fills is karstification diffuse flow dominated by internal runoff from rainfall in the highland setting of the Indosinian thrusting orogenic belt. The other fluid of allogenic recharge related to the later fills is the main lateral freshwater flow dominated by external runoff from the catchment in the setting of the horst-lowland within the rifting basin, induced by the Yanshanian destruction of the North China Craton. Finally, the relationship between the three fracture families and two kinds of related fluids is revealed. This allows us to propose a model to understand the polyphase-superimposed fracture-related karst reservoir complexes within the deep carbonate basement of tilting fault blocks that neighbour the Bozhong hydrocarbon kitchen and predict the formation of potential plays with high accuracy. 展开更多
关键词 carbonate basement reservoirs Buried hill Diagenetic fluid Fracture system KARSTIFICATION Bohai bay basin
下载PDF
Characteristics,Formation Periods,and Controlling Factors of Tectonic Fractures in Carbonate Geothermal Reservoirs:A Case Study of the Jixianian System in the Xiong'an New Area,China
19
作者 ZHANG Qinglian ZHU Xi +1 位作者 WANG Guiling MA Feng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第6期1625-1639,共15页
As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoy... As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoyuzhuang,Yangzhuang,Wumishan,Hongshuizhuang,and Tieling formations.The characteristics,formation periods,and controlling factors of reservoir tectonic fractures have been determined based on analyses of outcrops,cores,thin sections,and image logs.The results show that unfilled fractures account for over 87% and most tectonic fractures are high-angle shear fractures with angles concentrated at 40°to 70°and the fracture porosity increases linearly with an increased fracture aperture.Within the same tectonic setting and stress field,the lithology and layer thickness are the dominant factors governing the development of tectonic fractures,which are the most developed in dolomites and thin layers.Tectonic fractures were most likely formed in regions near faults or areas with larger stress gradients.The tectonic fractures in the carbonate geothermal reservoirs are roughly divided into four sets:NNW-SSE and NNE-SSW oriented‘X’-conjugated shear fractures formed from the Paleozoic to the pre-Yanshanian Movement;NE-SW-oriented shear fractures,formed in episode B of the Yanshanian Movement,occurred at the Early Cretaceous;nearly E-W-oriented tensional fractures formed in the late Yanshanian Movement at the Late Cretaceous to Paleogene,and NEE-SW-oriented shear fractures formed during the Himalayan movement. 展开更多
关键词 structural geology TECTONICS carbonate geothermal reservoirs MESOPROTEROZOIC Hebei Province
下载PDF
Polymer efficiency and sulfate concentration for hybrid EOR application to an acidic carbonate reservoir
20
作者 Yeonkyeong Lee Wonmo Sung Jihoon Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期993-1004,共12页
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi... Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water. 展开更多
关键词 Polymer efficiency Low-salinity polymer flooding Polymer adsorption Wettability alteration Sulfate ion Acidic carbonate reservoir
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部