It's a well-known fact that constraint-based algorithms for learning Bayesian network(BN) structure reckon on a large number of conditional independence(C1) tests.Therefore,it is difficult to learn a BN for indica...It's a well-known fact that constraint-based algorithms for learning Bayesian network(BN) structure reckon on a large number of conditional independence(C1) tests.Therefore,it is difficult to learn a BN for indicating the original causal relations in the true graph.In this paper,a two-phase method for learning equivalence class of BN is introduced.The first phase of the method learns a skeleton of the BN by CI tests.In this way,it reduces the number of tests compared with other existing algorithms and decreases the running time drastically.The second phase of the method orients edges that exist in all BN equivalence classes.Our method is tested on the ALARM network and experimental results show that our approach outperforms the other algorithms.展开更多
Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis.This paper provides a method that employs both mutual information and conditional mutual inform...Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis.This paper provides a method that employs both mutual information and conditional mutual information to identify the causal structure of multivariate time series causal graphical models.A three-step procedure is developed to learn the contemporaneous and the lagged causal relationships of time series causal graphs.Contrary to conventional constraint-based algorithm, the proposed algorithm does not involve any special kinds of distribution and is nonparametric.These properties are especially appealing for inference of time series causal graphs when the prior knowledge about the data model is not available.Simulations and case analysis demonstrate the effectiveness of the method.展开更多
文摘It's a well-known fact that constraint-based algorithms for learning Bayesian network(BN) structure reckon on a large number of conditional independence(C1) tests.Therefore,it is difficult to learn a BN for indicating the original causal relations in the true graph.In this paper,a two-phase method for learning equivalence class of BN is introduced.The first phase of the method learns a skeleton of the BN by CI tests.In this way,it reduces the number of tests compared with other existing algorithms and decreases the running time drastically.The second phase of the method orients edges that exist in all BN equivalence classes.Our method is tested on the ALARM network and experimental results show that our approach outperforms the other algorithms.
基金supported by the National Natural Science Foundation of China under Grant Nos.60972150, 10926197,61201323
文摘Detection and clarification of cause-effect relationships among variables is an important problem in time series analysis.This paper provides a method that employs both mutual information and conditional mutual information to identify the causal structure of multivariate time series causal graphical models.A three-step procedure is developed to learn the contemporaneous and the lagged causal relationships of time series causal graphs.Contrary to conventional constraint-based algorithm, the proposed algorithm does not involve any special kinds of distribution and is nonparametric.These properties are especially appealing for inference of time series causal graphs when the prior knowledge about the data model is not available.Simulations and case analysis demonstrate the effectiveness of the method.