A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
Grapiglia et al.(2013) proved subspace properties for the Celis-Dennis-Tapia(CDT) problem. If a subspace with lower dimension is appropriately chosen to satisfy subspace properties, then one can solve the CDT problem ...Grapiglia et al.(2013) proved subspace properties for the Celis-Dennis-Tapia(CDT) problem. If a subspace with lower dimension is appropriately chosen to satisfy subspace properties, then one can solve the CDT problem in that subspace so that the computational cost can be reduced. We show how to find subspaces that satisfy subspace properties for the CDT problem, by using the eigendecomposition of the Hessian matrix of the objection function. The dimensions of the subspaces are investigated. We also apply the subspace technologies to the trust region subproblem and the quadratic optimization with two quadratic constraints.展开更多
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
基金supported by National Natural Science Foundation of China(Grant Nos.11171217 and 11571234)
文摘Grapiglia et al.(2013) proved subspace properties for the Celis-Dennis-Tapia(CDT) problem. If a subspace with lower dimension is appropriately chosen to satisfy subspace properties, then one can solve the CDT problem in that subspace so that the computational cost can be reduced. We show how to find subspaces that satisfy subspace properties for the CDT problem, by using the eigendecomposition of the Hessian matrix of the objection function. The dimensions of the subspaces are investigated. We also apply the subspace technologies to the trust region subproblem and the quadratic optimization with two quadratic constraints.