The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ul...The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ultraviolet Spectrographic Imager(SSUSI) images are used to investigate the plasmaspheric evolutions during substorms. The most important finding is a nightside pointing plasmaspheric plume observed at 23:05 UT on 21 April 2014 under quiet solar wind and geomagnetic conditions, which drifted from the dusk sector. High correlations between the plasmapause evolutions and the auroral signatures exist during substorms. After substorm onset, the plasmapause erosion and the equatorward expansion of the auroral oval occur almost simultaneously in both MLT and UT, and then both the erosion and the expansion propagate westward and eastward. It is suggested that the plasmaspheric erosion and its MLT propagations are induced by the enhanced earthward plasma convection during substorm period, and the substorm dipolarization causes pitch-angle scattering of plasma sheet electrons and the resulting precipitation excites aurora emissions at the same time.展开更多
Chang'E-3 probe incorporates four landing gears to assure the soft-landing,which are stowed while launching and deployed after separated from rocket. Deployment reliability is quite crucial for this mission. The d...Chang'E-3 probe incorporates four landing gears to assure the soft-landing,which are stowed while launching and deployed after separated from rocket. Deployment reliability is quite crucial for this mission. The deployment reliability test( DRT) method and assessment method were developed in this paper. Then DRT was conducted and the deployment reliability estimate of Chang'E-3probe was used to verify the proposed methods.展开更多
Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lan...Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lander steadily for a long time.In order to assure the reliability of the landing gear and deal with the extremely severe landing conditions,many reliability measures were adopted in the design procedure,such as selection of cushion materials,optimization of mechanism configuration,design of deployment mode,allocation of buffer force and control of its variation.The successful landing on the moon of Chang'E-3 Probe has completely verified the high reliability of the landing gear.展开更多
The phase referencing Very Long Baseline Interferometry(VLBI)technique is a newly developed tool to measure the angular position of a deep space exploration probe in the plane-of-the-sky.Through alternating observatio...The phase referencing Very Long Baseline Interferometry(VLBI)technique is a newly developed tool to measure the angular position of a deep space exploration probe in the plane-of-the-sky.Through alternating observations between the probe and a nearby reference radio source,their accurate relative angular separation can be obtained from the radio images generated by this technique.To meet the requirements of the current orbit determination software,differential delay should be firstly derived from those radio images.A method to resolve the differential phase delay from the phase referencing VLBI technique is proposed in this paper,and as well the mathematical model for differential phase ambiguity resolution is established.This method is verified with practical measurement data from the Chang’E-3 mission.The differential phase delay between the Chang’E-3 lander and rover was derived from the phase referencing VLBI measurements,and was then imported into the Shanghai astronomical observatory Orbit Determination Program(SODP)to calculate the position of the rover relative to the lander on the lunar surface.The results are consistent with those acquired directly from radio images,indicating that the differential phase ambiguity has been correctly resolved.The proposed method can be used to promote applications of the phase referencing VLBI technique in future lunar or deep space explorations,and more accurate orbit determination becomes promising.展开更多
基金supported by National Natural Science Foundation of China (41674155 and 41274147)Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017258)Key Research Project of Chinese Academy of Sciences:Application Research on the Scientific Data from Chang’E-3 Mission (KGZD-EW-603)
文摘The plasmapause locations determined from the Chang'e-3(CE-3) Extreme Ultraviolet Camera(EUVC) images and the auroral boundaries determined from the Defense Meteorological Satellite Program(DMSP) Special Sensor Ultraviolet Spectrographic Imager(SSUSI) images are used to investigate the plasmaspheric evolutions during substorms. The most important finding is a nightside pointing plasmaspheric plume observed at 23:05 UT on 21 April 2014 under quiet solar wind and geomagnetic conditions, which drifted from the dusk sector. High correlations between the plasmapause evolutions and the auroral signatures exist during substorms. After substorm onset, the plasmapause erosion and the equatorward expansion of the auroral oval occur almost simultaneously in both MLT and UT, and then both the erosion and the expansion propagate westward and eastward. It is suggested that the plasmaspheric erosion and its MLT propagations are induced by the enhanced earthward plasma convection during substorm period, and the substorm dipolarization causes pitch-angle scattering of plasma sheet electrons and the resulting precipitation excites aurora emissions at the same time.
基金National Science and Technology Major Project,China
文摘Chang'E-3 probe incorporates four landing gears to assure the soft-landing,which are stowed while launching and deployed after separated from rocket. Deployment reliability is quite crucial for this mission. The deployment reliability test( DRT) method and assessment method were developed in this paper. Then DRT was conducted and the deployment reliability estimate of Chang'E-3probe was used to verify the proposed methods.
基金National Science and Technology Major Project,China
文摘Landing gear is one of the important components of Chang'E-3 Probe.The device was used to absorb the impact energy of Chang'E-3 Probe during the landing process.After landing on the moon,it can support the lander steadily for a long time.In order to assure the reliability of the landing gear and deal with the extremely severe landing conditions,many reliability measures were adopted in the design procedure,such as selection of cushion materials,optimization of mechanism configuration,design of deployment mode,allocation of buffer force and control of its variation.The successful landing on the moon of Chang'E-3 Probe has completely verified the high reliability of the landing gear.
基金the National Natural Science Foundation of China(Grant Nos.42030110,61603008 and U1831132)the Innovation Group of Natural Fund of Hubei Province(2018CFA087)。
文摘The phase referencing Very Long Baseline Interferometry(VLBI)technique is a newly developed tool to measure the angular position of a deep space exploration probe in the plane-of-the-sky.Through alternating observations between the probe and a nearby reference radio source,their accurate relative angular separation can be obtained from the radio images generated by this technique.To meet the requirements of the current orbit determination software,differential delay should be firstly derived from those radio images.A method to resolve the differential phase delay from the phase referencing VLBI technique is proposed in this paper,and as well the mathematical model for differential phase ambiguity resolution is established.This method is verified with practical measurement data from the Chang’E-3 mission.The differential phase delay between the Chang’E-3 lander and rover was derived from the phase referencing VLBI measurements,and was then imported into the Shanghai astronomical observatory Orbit Determination Program(SODP)to calculate the position of the rover relative to the lander on the lunar surface.The results are consistent with those acquired directly from radio images,indicating that the differential phase ambiguity has been correctly resolved.The proposed method can be used to promote applications of the phase referencing VLBI technique in future lunar or deep space explorations,and more accurate orbit determination becomes promising.