More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index...More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index and flood/drought (F/D) index obtained from the above information, the historical climate change, namely wet-dry conditions in borderland of Shaanxi Province, Gansu Province and Ningxia Hui Autonomous Region (BSGN, mainly included Ningxialu, Hezhoulu, Gongchanglu, Fengyuanlu and Yan'anlu in the Yuan Dynasty) was studied. The results showed that the climate of the region was generally dry and the ratio between drought and flood disasters was 85/38 during the period of 1208-1369. According to the frequencies of drought-flood disasters, the whole period could be divided into three phases. (1) 1208-1240: drought dominated the phase with occasional flood disasters. (2) 1240-1320: long-time drought disasters and extreme drought events happened frequently. (3) 1320-1369: drought disasters were less severe when flood and drought disasters happened alternately. Besides, the reconstructed wet-dry change curve revealed obvious transition and periodicity in the MongoI-Yuan Period. The transitions occurred in 1230 and 1325. The wet-dry change revealed 10- and 23-year quasi-periods which were consistent with solar cycles, indicating that solar activity had affected the wet-dry conditions of the study region in the Mongol-Yuan Period. The reconstructed results were consistent with two other study results reconstructed from natural evidences, and were similar to another study results from historical documents. All the above results showed that the climate in BSGN was characterized by long-time dry condition with frequent severe drought disasters during 1258 to 1308. Thus, these aspects of climatic change, might have profound impacts on local vegetation and socio-economic system.展开更多
The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hu...The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.展开更多
基金National Natural Science Foundation of China, No.40471047 No.40871033The Knowledge Innovation Program of Chinese Academy of Sciences, No.KZCX2-YW-315
文摘More than 240 items of historical records containing climatic information were retrieved from official historical books, local chronicles, annals and regional meteorological disaster yearbooks. By using moisture index and flood/drought (F/D) index obtained from the above information, the historical climate change, namely wet-dry conditions in borderland of Shaanxi Province, Gansu Province and Ningxia Hui Autonomous Region (BSGN, mainly included Ningxialu, Hezhoulu, Gongchanglu, Fengyuanlu and Yan'anlu in the Yuan Dynasty) was studied. The results showed that the climate of the region was generally dry and the ratio between drought and flood disasters was 85/38 during the period of 1208-1369. According to the frequencies of drought-flood disasters, the whole period could be divided into three phases. (1) 1208-1240: drought dominated the phase with occasional flood disasters. (2) 1240-1320: long-time drought disasters and extreme drought events happened frequently. (3) 1320-1369: drought disasters were less severe when flood and drought disasters happened alternately. Besides, the reconstructed wet-dry change curve revealed obvious transition and periodicity in the MongoI-Yuan Period. The transitions occurred in 1230 and 1325. The wet-dry change revealed 10- and 23-year quasi-periods which were consistent with solar cycles, indicating that solar activity had affected the wet-dry conditions of the study region in the Mongol-Yuan Period. The reconstructed results were consistent with two other study results reconstructed from natural evidences, and were similar to another study results from historical documents. All the above results showed that the climate in BSGN was characterized by long-time dry condition with frequent severe drought disasters during 1258 to 1308. Thus, these aspects of climatic change, might have profound impacts on local vegetation and socio-economic system.
文摘The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.