Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footpri...Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footprint,there has been increasing interest in CO_(2)/CO conversion on MBenes,but mostly focused on C_(1) products.C^(2+) chemicals generally possess higher energy densities and wider applications than C_(1) counterparts.However,C–C coupling is technically challenging because of high energy requirement and currently few catalysts are suited for this process.Here,we explore electrochemical CO reduction reaction to C_(2) chemicals on Mo_(2)B_(2)O_(2) MBene via density-functional theory calculations.Remarkably,the most favorable CO–COH coupling is revealed to be a spontaneous and barrierless process,making Mo_(2)B_(2)O_(2) an efficient catalyst for C–C coupling.Among C_(1) and C_(2) chemicals,ethanol is predicted to be the primary product.Furthermore,by charge and bond analysis,it is unraveled that there exist significantly more unbonded electrons in the C atom of intermediate*COH than other C_(1) intermediates,which is responsible for the facile C–C coupling.From an atomic scale,this work provides microscopic insight into C–C coupling process and suggests Mo_(2)B_(2)O_(2) a promising catalyst for electrochemical CO reduction to C_(2) chemicals.展开更多
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the...Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.展开更多
By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2...By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2) into CO.Generally,NiFe_(2_)O_(4) oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2) conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4) oxygen carriers during H_(2) reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H_(2) reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2) splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.展开更多
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems...This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.展开更多
Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and ...Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.展开更多
A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PT...A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.展开更多
Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added Ni...Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).展开更多
There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings,making thermo-dynamical modeling an effective tool for estimating the ideal melting point of...There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings,making thermo-dynamical modeling an effective tool for estimating the ideal melting point of heat transfer.Under certain assumptions,the present study builds a mathematical model of melting heat transport nanofluid flow of chemical reactions and joule heating.Nanofluid flow is described by higher-order partial non-linear differential equations.Incorporating suitable similarity transformations and dimensionless parameters converts these controlling partial differential equations into the non-linear ordinary differential equations and resulting system of nonlinear equations is established.Plotted graphic visualizations in MATLAB allow for an indepth analysis of the effects of distinguishing factors on fluid flow.Innovative applications of the findings include electronic cooling,heat transfer,reaction processes,nuclear reactors,micro heat pipes,and other related fields.If the exponential index increases,however,the thermal profile becomes worse.By comparing the current findings to those already published in the literature for this particular example,we find that they are highly congruent,therefore validating the present work.Every one of the numerical findings exhibits asymptotic behavior by meeting the specified boundary conditions.展开更多
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre...The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.展开更多
Thermo-hydro-mechanical-chemical(THMC)interactions are prevalent during CO_(2)geological sequestration(CGS).In this study,a sequential coupling THMC numerical simulation program was constructed,which can be used to ex...Thermo-hydro-mechanical-chemical(THMC)interactions are prevalent during CO_(2)geological sequestration(CGS).In this study,a sequential coupling THMC numerical simulation program was constructed,which can be used to explore the following issues of CGS:fluid and heat flow,solute transport;stresses,displacements and rock failures related to geo-mechanical effects;equilibrium and kinetic chemical reactions;chemical damage to mechanical properties of the rock.Then,the coupling program was applied to the Ordos CGS Project to study the formation response under the multifield interaction caused by CO_(2)injection.The simulation results show that the mechanical process dominates the short CO_(2)injection period.Specifically,the formation’s permeability near the injection well increases by 43%,due to the reduction of effective stress,which significantly promotes the lateral migration of CO_(2).When the injection rate exceeds 0.15 million tons per year,the cohesion of the reservoir rock is not enough to resist the shear force inside the rock and rock failure may occur.During the subsequent long-term sequestration period(200 years),the influence of mineral reactions gradually increases.Due to calcite dissolution,the shear modulus of caprock is predicted to decrease by 7.6%,which will to some extent increase the risk of rock failure.展开更多
Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for cat...Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts.展开更多
Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform Pd...Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.展开更多
Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition ...Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.展开更多
基金the A*STAR LCER-FI project(LCERFI01-0033 U2102d2006)the Ministry of Education of Singapore and the National University of Singapore(C-261-000-207-532/C-261-000-777-532 and R-279-000-574-114)for financial support.
文摘Emerging as a new class of two-dimensional materials with atomically thin layers,MBenes have great potential for many important applications such as energy storage and electrocatalysis.Toward mitigating carbon footprint,there has been increasing interest in CO_(2)/CO conversion on MBenes,but mostly focused on C_(1) products.C^(2+) chemicals generally possess higher energy densities and wider applications than C_(1) counterparts.However,C–C coupling is technically challenging because of high energy requirement and currently few catalysts are suited for this process.Here,we explore electrochemical CO reduction reaction to C_(2) chemicals on Mo_(2)B_(2)O_(2) MBene via density-functional theory calculations.Remarkably,the most favorable CO–COH coupling is revealed to be a spontaneous and barrierless process,making Mo_(2)B_(2)O_(2) an efficient catalyst for C–C coupling.Among C_(1) and C_(2) chemicals,ethanol is predicted to be the primary product.Furthermore,by charge and bond analysis,it is unraveled that there exist significantly more unbonded electrons in the C atom of intermediate*COH than other C_(1) intermediates,which is responsible for the facile C–C coupling.From an atomic scale,this work provides microscopic insight into C–C coupling process and suggests Mo_(2)B_(2)O_(2) a promising catalyst for electrochemical CO reduction to C_(2) chemicals.
基金support of National Natural Science Foundation of China(22179027)gratefully acknowledged.This work was also supported by the Natural Science Foundation of Guangxi Province(2021GXNSFAA075063,2018GXNSFDA281005)+1 种基金the National Key Research and Development Program of China(2017YFE0105500)Science&Technology Research Project of Guangdong Province(2017A020216009).
文摘Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions.
基金National Natural Science Foundation of China,Grant/Award Numbers:52076209,52006224,52106285,22179027Foundation and Applied Foundation Research of Guangdong Province,Grant/Award Number:2022B1515020045+1 种基金Natural Science Foundation of Guangxi Province,Grant/Award Number:2021GXNSFAA075036Young Talent Support Project of Guangzhou Association for Science and Technology,Grant/Award Number:QT‐2023‐042。
文摘By employing metal oxides as oxygen carriers,chemical looping demonstrates its effectiveness in transferring oxygen between reduction and oxidation environments to partially oxidize fuels into syngas and convert CO_(2) into CO.Generally,NiFe_(2_)O_(4) oxygen carriers have demonstrated remarkable efficiency in chemical looping CO_(2) conversion.Nevertheless,the intricate process of atomic migration and evolution within the internal structure of bimetallic oxygen carriers during continuous high‐temperature redox cycling remains unclear.Consequently,the lack of a fundamental understanding of the complex ionic migration and oxygen transfer associated with energy conversion processes hampers the design of high‐performance oxygen carriers.Thus,in this study,we employed in situ characterization techniques and theoretical calculations to investigate the ion migration behavior and structural evolution in the bulk of NiFe_(2_)O_(4) oxygen carriers during H_(2) reduction and CO_(2)/lab air oxidation cycles.We discovered that during the H_(2) reduction step,lattice oxygen rapidly migrates to vacancy layers to replenish consumed active oxygen species,while Ni leaches from the material and migrates to the surface.During the CO_(2) splitting step,Ni migrates toward the core of the bimetallic oxygen carrier,forming Fe–Ni alloys.During the air oxidation step,Fe–Ni migrates outward,creating a hollow structure owing to the Kirkendall effect triggered by the swift transfer of lattice oxygen.The metal atom migration paths depend on the oxygen transfer rates.These discoveries highlight the significance of regulating the release–recovery rate of lattice oxygen to uphold the structures and reactivity of oxygen carriers.This work offers a comprehensive understanding of the oxidation/reduction‐driven atomic interdiffusion behavior of bimetallic oxygen carriers.
基金the EU for providing support to these activities through the EU projects DECADE(862030),EPOCH(101070976)and SCOPE(810182)。
文摘This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective.
文摘Chemical looping combustion has the potential to be an efficient and low-cost technology capable of contributing to the reduction of the atmospheric concentration of CO_(2) in order to reach the 1.5/2°C goal and mitigate climate change.In this process,a metal oxide is used as oxygen carrier in a dual fluidized bed to generate clean CO_(2) via combustion of biomass.Most commonly,natural ores or synthetic materials are used as oxygen carrier whereas both must meet special requirements for the conversion of solid fuels.Synthetic oxygen carriers are characterized by higher reactivity at the expense of higher costs versus the lower-cost natural ores.To determine the viability of both possibilities,a techno-economic comparison of a synthetic material based on manganese,iron,and copper to the natural ore ilmenite was conducted.The synthetic oxygen carrier was characterized and tested in a pilot plant,where high combustion efficiencies up to 98.4%and carbon capture rates up to 98.5%were reached.The techno-economic assessment resulted in CO_(2) capture costs of 75 and 40€/tCO_(2) for the synthetic and natural ore route respectively,whereas a sensitivity analysis showed the high impact of production costs and attrition rates of the synthetic material.The synthetic oxygen carrier could break even with the natural ore in case of lower production costs and attrition rates,which could be reached by adapting the production process and recycling material.By comparison to state-of-the-art technologies,it is demonstrated that both routes are viable and the capture cost of CO_(2) could be reduced by implementing the chemical looping combustion technology.
基金the National Natural Science Foundation of China (Grant No.12002045)State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology (Grant No.QNKT22-09)。
文摘A ternary system of PTFE/Al/Bi_(2)O_(3)is constructed by incorporating PTFE-based reactive material and thermite for enhancing the energy release of the PTFE-based reactive material.The effects of Bi_(2)O_(3)in the PTFE/Al/Bi_(2)O_(3)on both mechanical properties and the energy release were investigated through various tests such as thermogravimetry-differential scanning calorimetry,adiabatic oxygen bomb test and split Hopkinson pressure bar test.The microstructure observed through scanning electron microscope and Xray diffraction results are used to analyze the ignition and reaction mechanism of PTFE/Al/Bi_(2)O_(3).The results indicate that the PTFE/Al/Bi_(2)O_(3)are capable of triggering the exothermic reaction of molten PTFE/Bi_(2)O_(3)and Al/Bi_(2)O_(3)over the PTFE/Al reactive materials,thereby promoting reactions.The excessive aluminum in the ternary system is beneficial for increasing energy release.The ignition of shock-induced chemical reactions in PTFE/Al/Bi_(2)O_(3)is closely related to the material fracture.The dominant mechanism for hot-spot generation under Split Hopkinson Pressure Bar test is the frictional temperature rise at the microcrack after failure.
文摘Ethane chemical looping oxidative dehydrogenation(CL-ODH)to ethylene is a new technology for ethylene preparation.Fe_(2)O_(3)/MgO oxygen carrier was prepared using the co-precipitation method.The influence of added NiO and its different loadings on Fe_(2)O_(3)/MgO were investigated.Then,a series of oxygen carriers were applied in the CL-ODH of the ethane cycle system.Brunauer-Emmett-Teller(BET),X-ray diffractometry(XRD),X-ray photoelection spectroscopy(XPS),and H2-temperature programmed reduction(TPR)were used to characterize the physicochemical properties of these oxygen carriers.It was confirmed that an interaction between NiO and Fe_(2)O_(3) occurred based on the XPS and H2-TPR results.Based on the CL-ODH activity performance tests conducted in a fixed-bed reactor,it was revealed that ethylene selectivity was significantly improved after NiO addition.Fe_(2)O_(3)-10%NiO/MgO showed the best activity performance with 93%ethane conversion and 50%ethylene selectivity at a reaction temperature of 650℃,atmospheric pressure,and space velocity of 7500 mL/(g·h).
文摘There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings,making thermo-dynamical modeling an effective tool for estimating the ideal melting point of heat transfer.Under certain assumptions,the present study builds a mathematical model of melting heat transport nanofluid flow of chemical reactions and joule heating.Nanofluid flow is described by higher-order partial non-linear differential equations.Incorporating suitable similarity transformations and dimensionless parameters converts these controlling partial differential equations into the non-linear ordinary differential equations and resulting system of nonlinear equations is established.Plotted graphic visualizations in MATLAB allow for an indepth analysis of the effects of distinguishing factors on fluid flow.Innovative applications of the findings include electronic cooling,heat transfer,reaction processes,nuclear reactors,micro heat pipes,and other related fields.If the exponential index increases,however,the thermal profile becomes worse.By comparing the current findings to those already published in the literature for this particular example,we find that they are highly congruent,therefore validating the present work.Every one of the numerical findings exhibits asymptotic behavior by meeting the specified boundary conditions.
基金the support from National Natural Science Foundation of China (22208355, 22178363 and 21978300)the financial support and mica samples from Changzi Wu and RIKA technology CO., LTD.
文摘The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%.
基金jointly supported by the National Natural Science Foundation of China(Grant No.42141013)the CNPC Innovation Found(2021 D002-1102)the China Postdoctoral Science Foundation(No.2021M701379)。
文摘Thermo-hydro-mechanical-chemical(THMC)interactions are prevalent during CO_(2)geological sequestration(CGS).In this study,a sequential coupling THMC numerical simulation program was constructed,which can be used to explore the following issues of CGS:fluid and heat flow,solute transport;stresses,displacements and rock failures related to geo-mechanical effects;equilibrium and kinetic chemical reactions;chemical damage to mechanical properties of the rock.Then,the coupling program was applied to the Ordos CGS Project to study the formation response under the multifield interaction caused by CO_(2)injection.The simulation results show that the mechanical process dominates the short CO_(2)injection period.Specifically,the formation’s permeability near the injection well increases by 43%,due to the reduction of effective stress,which significantly promotes the lateral migration of CO_(2).When the injection rate exceeds 0.15 million tons per year,the cohesion of the reservoir rock is not enough to resist the shear force inside the rock and rock failure may occur.During the subsequent long-term sequestration period(200 years),the influence of mineral reactions gradually increases.Due to calcite dissolution,the shear modulus of caprock is predicted to decrease by 7.6%,which will to some extent increase the risk of rock failure.
基金the Fundamental Research Funds for Central Universities (BLX202151)the National Natural Science Foundation of China (22208021, 52225003, 22109004)。
文摘Copper(Cu)-based materials are known as the most attractive catalysts for electrochemical carbon dioxide reduction reaction(CO_(2)RR),especially the Cu^(+) species(e.g.,Cu_(2)O),which show excellent capability for catalyzing CO_(2) to C_(2+) chemicals because of their unique electronic structure.However,the active Cu^(+) species are prone to be reduced to metallic Cu under an electroreduction environment,thus resulting in fast deactivation and poor selectivity.Here,we developed an advanced surface modification strategy to maintain the active Cu^(+) species via assembling a protective layer of metal-organic framework(copper benzenetricarboxylate,CuBTC) on the surface of Cu_(2)O octahedron(Cu_(2)O@CuBTC).It's encouraging to see that the Cu_(2)O@CuBTC heterostructure outperforms the bare Cu_(2)O octahedron in catalyzing CO_(2) to C_(2+) chemicals and dramatically enhances the ratio of C_(2)H_(4)/CH_(4) products.A systematic study reveals that the introduced CuBTC shell plays a critical role in maintaining the active Cu^(+) species in Cu_(2)O@CuBTC heterostructure under reductive conditions.This work offers a practical strategy for improving the catalytic performance of CO_(2)RR over copper oxides and also establishes a route to maintain the state of valence-sensitive catalysts.
基金supported by National Natural Science Foundation of China (No.11974301)Key Research and Development Program of Hunan Province (No.2022GK2007)+2 种基金Key Project from Department Education of Hunan Province (No.22A0123)Scientific Research Fund of Hunan Provincial Education Department (No.21B0136)National college students innovation and entrepreneurship training program (No.S202310530016)。
文摘Palladium(Pd)-based sulfides have triggered extensive interest due to their unique properties and potential applications in the fields of electronics and optoelectronics.However,the synthesis of large-scale uniform PdS and PdS_(2)nanofilms(NFs)remains an enormous challenge.In this work,2-inch wafer-scale PdS and PdS_(2) NFs with excellent stability can be controllably prepared via chemical vapor deposition combined with electron beam evaporation technique.The thickness of the pre-deposited Pd film and the sulfurization temperature are critical for the precise synthesis of PdS and PdS_(2) NFs.A corresponding growth mechanism has been proposed based on our experimental results and Gibbs free energy calculations.The electrical transport properties of PdS and PdS_(2) NFs were explored by conductive atomic force microscopy.Our findings have achieved the controllable growth of PdS and PdS_(2) NFs,which may provide a pathway to facilitate PdS and PdS_(2) based applications for next-generation high performance optoelectronic devices.
基金supported by the National Natural Science Foundation of China(22175070,22293041,51902081,and 21871106)Key Fund in Hebei Province Department of Education China(ZD2022042)。
文摘Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability.