Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.Howev...Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.However,the expression,clinical significance,and effects on cell propagation,invasion,and dissemination of circRNA_001896 in cervical cancer(CC)tissues remain unclear.Methods:The Gene Expression Omnibus(GEO)datasets(GSE113696 and GSE102686)were used to examine differential circRNA expression in CC and adjacent tissues.The expression of circRNA_001896 was detected in 72 CC patients usingfluorescence quantitative PCR.Correlation analysis with clinical pathological features was performed through COX multivariate and univariate analysis.The effect of circRNA_001896 downregulation on CC cell propagation was examined using the cell counting kit-8(CCK-8)test,clonogenic,3D sphere formation,and in vivo tumorigenesis assays.Results:Intersection of the GSE113696 and GSE102686 datasets revealed an increased expression of four circRNAs,including circRNA_001896,in CC tissues.Fluorescence quantitative PCR confirmed circRNA_001896 as a circular RNA.High expression of circRNA_001896 was considerably associated with lymph node metastasis,International Federation of Gynecologists and Obstetricians(FIGO)stage,tumor diameter,and survival period in CC patients.Proportional hazards model(COX)univariate and multivariate analyses revealed that circRNA_001896 expressions are a distinct risk factor affecting CC patients’prognosis.Cellular functional experiments showed that downregulating circRNA_001896 substantially suppressed CC cell growth,colony formation,and 3D sphere-forming ability.In vivo,tumorigenesis analysis in nude mice demonstrated that downregulating circRNA_001896 remarkably reduced the in vivo proliferation capacity of CC cells.Conclusion:CircRNA_001896 is highly expressed in CC tissues and is substantially related to lymph node metastasis,FIGO stage,tumor size,and survival period in patients.Moreover,downregulating circRNA_001896 significantly inhibits both in vivo and in vitro propagation of CC cells.Therefore,circRNA_001896 might be used as a biomarker for targeted therapy in cervical cancer.展开更多
BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new ...BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.展开更多
Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the ex...Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.展开更多
N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modi...N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.展开更多
Circular RNAs(circRNAs),a new star of noncoding RNAs,are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome.Most circRNAs are conserved throughout species and fre-...Circular RNAs(circRNAs),a new star of noncoding RNAs,are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome.Most circRNAs are conserved throughout species and fre-quently show stage-specific expression during various stages of tissue develop-ment.CircRNAs were a mystery discovery,as they were initially believed to be a product of splicing errors;however,subsequent research has shown that ci-rcRNAs can perform various functions and help in the regulation of splicing and transcription,including playing a role as microRNA(miRNA)sponges.With the application of high throughput next-generation technologies,circRNA hotspots were discovered.There are emerging indications that explain the association of circRNAs with human diseases,like cancers,developmental disorders,and in-flammation,and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases,including cancer.After the discoveries of miRNAs and long noncoding RNAs,circRNAs are now acting as a novel re-search entity of interest in the field of RNA disease biology.In this review,we aim to focus on major updates on the biogeny and metabolism of circRNAs,along with their possible/established roles in major human diseases.展开更多
基金This study was supported by the Nantong Science and Technology Plan Project(No.JC22022107).
文摘Objective:Previous studies indicated that aberrant circular RNA(circRNA)expression affects gene expression regulatory networks,leading to the aberrant activation of tumor pathways and promoting tumor cell growth.However,the expression,clinical significance,and effects on cell propagation,invasion,and dissemination of circRNA_001896 in cervical cancer(CC)tissues remain unclear.Methods:The Gene Expression Omnibus(GEO)datasets(GSE113696 and GSE102686)were used to examine differential circRNA expression in CC and adjacent tissues.The expression of circRNA_001896 was detected in 72 CC patients usingfluorescence quantitative PCR.Correlation analysis with clinical pathological features was performed through COX multivariate and univariate analysis.The effect of circRNA_001896 downregulation on CC cell propagation was examined using the cell counting kit-8(CCK-8)test,clonogenic,3D sphere formation,and in vivo tumorigenesis assays.Results:Intersection of the GSE113696 and GSE102686 datasets revealed an increased expression of four circRNAs,including circRNA_001896,in CC tissues.Fluorescence quantitative PCR confirmed circRNA_001896 as a circular RNA.High expression of circRNA_001896 was considerably associated with lymph node metastasis,International Federation of Gynecologists and Obstetricians(FIGO)stage,tumor diameter,and survival period in CC patients.Proportional hazards model(COX)univariate and multivariate analyses revealed that circRNA_001896 expressions are a distinct risk factor affecting CC patients’prognosis.Cellular functional experiments showed that downregulating circRNA_001896 substantially suppressed CC cell growth,colony formation,and 3D sphere-forming ability.In vivo,tumorigenesis analysis in nude mice demonstrated that downregulating circRNA_001896 remarkably reduced the in vivo proliferation capacity of CC cells.Conclusion:CircRNA_001896 is highly expressed in CC tissues and is substantially related to lymph node metastasis,FIGO stage,tumor size,and survival period in patients.Moreover,downregulating circRNA_001896 significantly inhibits both in vivo and in vitro propagation of CC cells.Therefore,circRNA_001896 might be used as a biomarker for targeted therapy in cervical cancer.
基金Supported by the National Natural Science Foundation of China,No.81774093,No.81904009,No.81974546 and No.82174182Key R&D Project of Hubei Province,No.2020BCB001.
文摘BACKGROUND Circular RNAs(circRNAs)are involved in the pathogenesis of many diseases through competing endogenous RNA(ceRNA)regulatory mechanisms.AIM To investigate a circRNA-related ceRNA regulatory network and a new predictive model by circRNA to understand the diagnostic mechanism of circRNAs in ulcerative colitis(UC).METHODS We obtained gene expression profiles of circRNAs,miRNAs,and mRNAs in UC from the Gene Expression Omnibus dataset.The circRNA-miRNA-mRNA network was constructed based on circRNA-miRNA and miRNA-mRNA interactions.Functional enrichment analysis was performed to identify the biological mechanisms involved in circRNAs.We identified the most relevant differential circRNAs for diagnosing UC and constructed a new predictive nomogram,whose efficacy was tested with the C-index,receiver operating characteristic curve(ROC),and decision curve analysis(DCA).RESULTS A circRNA-miRNA-mRNA regulatory network was obtained,containing 12 circRNAs,three miRNAs,and 38 mRNAs.Two optimal prognostic-related differentially expressed circRNAs,hsa_circ_0085323 and hsa_circ_0036906,were included to construct a predictive nomogram.The model showed good discrimination,with a C-index of 1(>0.9,high accuracy).ROC and DCA suggested that the nomogram had a beneficial diagnostic ability.CONCLUSION This novel predictive nomogram incorporating hsa_circ_0085323 and hsa_circ_0036906 can be conveniently used to predict the risk of UC.The circRNa-miRNA-mRNA network in UC could be more clinically significant.
基金This research was supported by the Shanghai Natural Science Fund(No.21ZR1447500)Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Baoshan Branch Medical Key Specialty Construction Project(No.rbzdzk-2023-001).
文摘Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.
基金Key Project Research and Development Plan of Hainan Province(No.ZDYF2020134,ZDYF2022SHFZ283)Natural Science Foundation of Hainan Province(No.821QN391)。
文摘N6-methyladenosine(m6A)is a reversible epigenetic modification, which is one of the most abundant modifiers in eukaryotic cells and has been commonly reported in messenger RNAs and non-coding RNAs. The processing modification of m6A regulates RNA transcription, processing, splicing, degradation, and translation, and plays an important role in the biological process of tumors. Circular RNA, which lacks the 5' cap structure, has been mistakenly regarded as a "junk sequence" generated by accidental shearing during the transcription process. However, it has been found that circRNAs can be involved in tumor invasion and metastasis through microRNAs, binding proteins, translated peptides, and m6A modifications. In this paper, we reviewed the role of m6A modifications in circRNA regulation and their functions in hepatocellular carcinoma and discussed their potential clinical applications and future development in this field.
文摘Circular RNAs(circRNAs),a new star of noncoding RNAs,are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome.Most circRNAs are conserved throughout species and fre-quently show stage-specific expression during various stages of tissue develop-ment.CircRNAs were a mystery discovery,as they were initially believed to be a product of splicing errors;however,subsequent research has shown that ci-rcRNAs can perform various functions and help in the regulation of splicing and transcription,including playing a role as microRNA(miRNA)sponges.With the application of high throughput next-generation technologies,circRNA hotspots were discovered.There are emerging indications that explain the association of circRNAs with human diseases,like cancers,developmental disorders,and in-flammation,and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases,including cancer.After the discoveries of miRNAs and long noncoding RNAs,circRNAs are now acting as a novel re-search entity of interest in the field of RNA disease biology.In this review,we aim to focus on major updates on the biogeny and metabolism of circRNAs,along with their possible/established roles in major human diseases.