The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-...The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.展开更多
The stability constants of Sb^5+with Cl−as well as thermodynamics of the Sb−S−Cl−H2O system were calculated.The stability constants of Sb5+with Cl−were obtained by theoretical calculations of the absorbance of a Sb5+-...The stability constants of Sb^5+with Cl−as well as thermodynamics of the Sb−S−Cl−H2O system were calculated.The stability constants of Sb5+with Cl−were obtained by theoretical calculations of the absorbance of a Sb5+-containing solution at different Cl^−concentrations,which was detected by spectrophotometric analysis at certain wavelengths of light(380 nm).The logarithmic values versus 10 of stability constants of Sb^5+with Cl−were 1.795,3.150,4.191,4.955,5.427 and 5.511,respectively,and partly filled the data gaps in the hydrometallurgy of antimony.The presence and distribution of pentavalent antimony compounds under different conditions were analyzed based on equilibrium calculations.Thermodynamic equilibrium calculations were performed for Sb−S−Cl−H2O system,which included the complex behavior of Sb with Cl,and the equilibrium equations of related reactions in this system were integrated into the potential−pH diagram.展开更多
钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用...钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用第一性原理对无铅双钙钛矿Cs_(2)NaScX_(6)(X=Cl,Br,I)的电子及光学性质进行了理论计算。计算结果表明:Cs_(2)NaScX_(6)(X=Cl,Br,I)为直接带隙半导体,带隙值分别为5.545 e V(Cl)、4.549 eV(Br)和3.408 eV(I),Cs_(2)NaScI_(6)在紫外光范围内具有较强的光吸收。本研究内容为无铅A_(2)B^(I)B^(III)X_(6)型双钙钛矿成为UV-LED的候选材料提供理论支持。展开更多
All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,s...All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.展开更多
基金Project(51478164)supported by the National Natural Science Foundation of ChinaProject(BK20181306)supported by Natural Science Foundation of Jiangsu Province,China。
文摘The aim of this paper is to investigate the effect of nitrite intercalated Mg-Al layered double hydroxides(Mg-Al LDH-NO_(2))on mortar durability under the coexisting environment of Cl−and SO_(4)^(2-).Cl−and SO_(4)^(2-) binding properties of Mg-Al LDH-NO_(2) in simulated concrete pore solutions,Cl−and SO_(4)^(2-) diffusion properties of mortars with Mg-Al LDHNO 2 were examined.The steel corrosion and resistance of mortar against SO_(4)^(2-) attack were also evaluated.The results indicate that Mg-Al LDH-NO_(2) can effectively adsorb the Cl−and SO_(4)^(2-) in simulated concrete pore solution,and inhibit the diffusion of Cl−and SO_(4)^(2-) into cement mortars.The presence of SO_(4)^(2-) can greatly affect the uptake amount of Cl−,and there is a coupled effect of Cl−and SO_(4)^(2-) on their penetration into mortar specimens.In addition,Mg-Al LDH-NO_(2) can greatly upgrade the resistance of mortars against SO_(4)^(2-) attack and well prevent the steel from corrosion.However,Cl−will aggravate the SO_(4)^(2-) attack and SO_(4)^(2-) can initially decrease and then increase the steel corrosion.
基金Projects(51904048,51922108)supported by the National Natural Science Foundation of ChinaProject(2019JJ20031)supported by the Hunan Natural Science Foundation,ChinaProject(gjj170507)supported by the Scientific Research Foundation of Jiangxi Provincial Department of Education,China。
文摘The stability constants of Sb^5+with Cl−as well as thermodynamics of the Sb−S−Cl−H2O system were calculated.The stability constants of Sb5+with Cl−were obtained by theoretical calculations of the absorbance of a Sb5+-containing solution at different Cl^−concentrations,which was detected by spectrophotometric analysis at certain wavelengths of light(380 nm).The logarithmic values versus 10 of stability constants of Sb^5+with Cl−were 1.795,3.150,4.191,4.955,5.427 and 5.511,respectively,and partly filled the data gaps in the hydrometallurgy of antimony.The presence and distribution of pentavalent antimony compounds under different conditions were analyzed based on equilibrium calculations.Thermodynamic equilibrium calculations were performed for Sb−S−Cl−H2O system,which included the complex behavior of Sb with Cl,and the equilibrium equations of related reactions in this system were integrated into the potential−pH diagram.
文摘钙钛矿材料由于具有结构稳定、易于获取、成本低廉和易于合成等优点,在发光二极管、激光器和太阳能电池等光电器件领域具有广阔的应用前景。目前,部分适合UV-LED应用的钙钛矿具有结构不稳定性。为了寻找结构稳定的钙钛矿,此项研究利用第一性原理对无铅双钙钛矿Cs_(2)NaScX_(6)(X=Cl,Br,I)的电子及光学性质进行了理论计算。计算结果表明:Cs_(2)NaScX_(6)(X=Cl,Br,I)为直接带隙半导体,带隙值分别为5.545 e V(Cl)、4.549 eV(Br)和3.408 eV(I),Cs_(2)NaScI_(6)在紫外光范围内具有较强的光吸收。本研究内容为无铅A_(2)B^(I)B^(III)X_(6)型双钙钛矿成为UV-LED的候选材料提供理论支持。
基金supported by the National Key Research and Development Program of China(No.2018YFE0111600)the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202307)for financial support。
文摘All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.