The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the ...The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.展开更多
K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper propo...K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.展开更多
Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease ...Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.展开更多
In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering a...In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.展开更多
In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared dista...In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.展开更多
Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experien...Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.展开更多
Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-clus...Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application.展开更多
Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped....Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable.展开更多
The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature inclu...The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.展开更多
The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty c...The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim.展开更多
Vigorously developing flexible resources in power systems will be the key to building a new power system and realizing energy trans-formation.The investment construction cost and operation cost of various flexible res...Vigorously developing flexible resources in power systems will be the key to building a new power system and realizing energy trans-formation.The investment construction cost and operation cost of various flexible resources are different,and the adjustment ability is different in different timescales.Therefore,the optimization of complementary allocation of various resources needs to take into account the economy and adjustment ability of different resources.In this paper,the global K-means load clustering model is pro-posed and the 365-day net load is reduced to eight typical daily net loads by clustering.Secondly,a two-level optimization model of flexible resource complementary allocation considering wind power and photovoltaic consumption is constructed.The flexible resources involved include the flexible transformation of thermal power,hydropower,pumped storage,energy storage,and demand response.The upper-layer model optimizes the capacity allocation of various flexible resources with the minimum investment and construction cost as the goal and the lower layer optimizes the operating output of various units with the minimum operating cost as the goal.The results of the example analysis show that the flexible capacity of thermal power units has nothing to do with the abandonment rate of renewable energy.As the abandonment rate of renewable energy decreases,the optimal capacity of pumped storage,electrochemical energy storage,and hydropower units increases.When the power-abandonment rate of renewable energy is 5%,the optimal allocation capacity of thermal power flexibility transformation,pumped storage,electrochemical energy storage,hydropower unit,and adjustable load in Province A is 5313,17090,5830,72113,and 4250 MW,respectively.Under the condition that the renewable-energy abandonment rate is 0,5%,and 10%respectively,the configured capacity of pumped storage is 20000,17090,and 14847 MW,respectively.展开更多
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical...Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.展开更多
Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-com...Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.展开更多
This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization pro...This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization problem, encountered as one of the toughest problems in power systems, in which some power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In the proposed algorithm, the algorithm integrates the main features of a binary-real coded genetic algorithm (GA) and k-means clustering technique. The binary coded GA is used to obtain a feasible commitment schedule for each generating unit;while the power amounts generated by committed units are determined by using real coded GA for the feasible commitment obtained in each interval. k-means clustering algorithm divides population into a specific number of subpopulations with dynamic size. In this way, using k-means clustering algorithm allows the use of different GA operators with the whole population and avoids the local problem minima. The effectiveness of the proposed technique is validated on a test power system available in the literature. The proposed algorithm performance is found quite satisfactory in comparison with the previously reported results.展开更多
Clustering algorithm, which is a statistical analysis method for research in classifications, plays an important role in data mining algorithm. Clustering algorithm based on similarity, and is easy to combine with oth...Clustering algorithm, which is a statistical analysis method for research in classifications, plays an important role in data mining algorithm. Clustering algorithm based on similarity, and is easy to combine with other methods in optimization. In this review, signal clustering algorithm is introduced by discussing of the clustering parametric in different signal clustering algorithms. In order to develop traditional algorithm, we introduce a series of improvement, development and application of the methods in recent years. Finally, we make an outlook of the future direction and content of the research in this field.展开更多
Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis...Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.展开更多
In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance fu...In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments.展开更多
The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with...The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).展开更多
Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities...Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.展开更多
This paper discusses a comparative study of two modeling methods based on multimodel approach. The first is based on C-means clustering algorithm and the second is based on K-means clustering algorithm. The two method...This paper discusses a comparative study of two modeling methods based on multimodel approach. The first is based on C-means clustering algorithm and the second is based on K-means clustering algorithm. The two methods are experimentally applied to an induction motor. The multimodel modeling consists in representing the IM through a finite number of local models. This number of models has to be initially fixed, for which a subtractive clustering is necessary. Then both C-means and K-means clustering are exploited to determine the clusters. These clusters will be then exploited on the basis of structural and parametric identification to determine the local models that are combined, finally, to form the multimodel. The experimental study is based on MATLAB/SIMULINK environment and a DSpace scheme with DS1104 controller board. Experimental results approve that the multimodel based on K-means clustering algorithm is the most efficient.展开更多
文摘The K-means algorithm is widely known for its simplicity and fastness in text clustering.However,the selection of the initial clus?tering center with the traditional K-means algorithm is some random,and therefore,the fluctuations and instability of the clustering results are strongly affected by the initial clustering center.This paper proposed an algorithm to select the initial clustering center to eliminate the uncertainty of central point selection.The experiment results show that the improved K-means clustering algorithm is superior to the traditional algorithm.
文摘K-means algorithm is one of the most widely used algorithms in the clustering analysis. To deal with the problem caused by the random selection of initial center points in the traditional al- gorithm, this paper proposes an improved K-means algorithm based on the similarity matrix. The im- proved algorithm can effectively avoid the random selection of initial center points, therefore it can provide effective initial points for clustering process, and reduce the fluctuation of clustering results which are resulted from initial points selections, thus a better clustering quality can be obtained. The experimental results also show that the F-measure of the improved K-means algorithm has been greatly improved and the clustering results are more stable.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R104)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Several pests feed on leaves,stems,bases,and the entire plant,causing plant illnesses.As a result,it is vital to identify and eliminate the disease before causing any damage to plants.Manually detecting plant disease and treating it is pretty challenging in this period.Image processing is employed to detect plant disease since it requires much effort and an extended processing period.The main goal of this study is to discover the disease that affects the plants by creating an image processing system that can recognize and classify four different forms of plant diseases,including Phytophthora infestans,Fusarium graminearum,Puccinia graminis,tomato yellow leaf curl.Therefore,this work uses the Support vector machine(SVM)classifier to detect and classify the plant disease using various steps like image acquisition,Pre-processing,Segmentation,feature extraction,and classification.The gray level co-occurrence matrix(GLCM)and the local binary pattern features(LBP)are used to identify the disease-affected portion of the plant leaf.According to experimental data,the proposed technology can correctly detect and diagnose plant sickness with a 97.2 percent accuracy.
基金The National Natural Science Foundation of China(No50674086)Specialized Research Fund for the Doctoral Program of Higher Education (No20060290508)the Youth Scientific Research Foundation of China University of Mining and Technology (No2006A047)
文摘In allusion to the disadvantage of having to obtain the number of clusters of data sets in advance and the sensitivity to selecting initial clustering centers in the k-means algorithm, an improved k-means clustering algorithm is proposed. First, the concept of a silhouette coefficient is introduced, and the optimal clustering number Kopt of a data set with unknown class information is confirmed by calculating the silhouette coefficient of objects in clusters under different K values. Then the distribution of the data set is obtained through hierarchical clustering and the initial clustering-centers are confirmed. Finally, the clustering is completed by the traditional k-means clustering. By the theoretical analysis, it is proved that the improved k-means clustering algorithm has proper computational complexity. The experimental results of IRIS testing data set show that the algorithm can distinguish different clusters reasonably and recognize the outliers efficiently, and the entropy generated by the algorithm is lower.
文摘In k-means clustering, we are given a set of n data points in d-dimensional space R^d and an integer k and the problem is to determine a set of k points in R^d, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this paper, we present a simple and efficient clustering algorithm based on the k-means algorithm, which we call enhanced k-means algorithm. This algorithm is easy to implement, requiring a simple data structure to keep some information in each iteration to be used in the next iteration. Our experimental results demonstrated that our scheme can improve the computational speed of the k-means algorithm by the magnitude in the total number of distance calculations and the overall time of computation.
文摘Classification systems such as Slope Mass Rating(SMR) are currently being used to undertake slope stability analysis. In SMR classification system, data is allocated to certain classes based on linguistic and experience-based criteria. In order to eliminate linguistic criteria resulted from experience-based judgments and account for uncertainties in determining class boundaries developed by SMR system,the system classification results were corrected using two clustering algorithms, namely K-means and fuzzy c-means(FCM), for the ratings obtained via continuous and discrete functions. By applying clustering algorithms in SMR classification system, no in-advance experience-based judgment was made on the number of extracted classes in this system, and it was only after all steps of the clustering algorithms were accomplished that new classification scheme was proposed for SMR system under different failure modes based on the ratings obtained via continuous and discrete functions. The results of this study showed that, engineers can achieve more reliable and objective evaluations over slope stability by using SMR system based on the ratings calculated via continuous and discrete functions.
文摘Cluster analysis is one of the major data analysis methods widely used for many practical applications in emerging areas of data mining. A good clustering method will produce high quality clusters with high intra-cluster similarity and low inter-cluster similarity. Clustering techniques are applied in different domains to predict future trends of available data and its uses for the real world. This research work is carried out to find the performance of two of the most delegated, partition based clustering algorithms namely k-Means and k-Medoids. A state of art analysis of these two algorithms is implemented and performance is analyzed based on their clustering result quality by means of its execution time and other components. Telecommunication data is the source data for this analysis. The connection oriented broadband data is given as input to find the clustering quality of the algorithms. Distance between the server locations and their connection is considered for clustering. Execution time for each algorithm is analyzed and the results are compared with one another. Results found in comparison study are satisfactory for the chosen application.
基金supporting project number(RSP2022R498),King Saud University,Riyadh,Saudi Arabia.
文摘Data clustering is crucial when it comes to data processing and analytics.The new clustering method overcomes the challenge of evaluating and extracting data from big data.Numerical or categorical data can be grouped.Existing clustering methods favor numerical data clustering and ignore categorical data clustering.Until recently,the only way to cluster categorical data was to convert it to a numeric representation and then cluster it using current numeric clustering methods.However,these algorithms could not use the concept of categorical data for clustering.Following that,suggestions for expanding traditional categorical data processing methods were made.In addition to expansions,several new clustering methods and extensions have been proposed in recent years.ROCK is an adaptable and straightforward algorithm for calculating the similarity between data sets to cluster them.This paper aims to modify the algo-rithm by creating a parameterized version that takes specific algorithm parameters as input and outputs satisfactory cluster structures.The parameterized ROCK algorithm is the name given to the modified algorithm(P-ROCK).The proposed modification makes the original algorithm moreflexible by using user-defined parameters.A detailed hypothesis was developed later validated with experimental results on real-world datasets using our proposed P-ROCK algorithm.A comparison with the original ROCK algorithm is also provided.Experiment results show that the proposed algorithm is on par with the original ROCK algorithm with an accuracy of 97.9%.The proposed P-ROCK algorithm has improved the runtime and is moreflexible and scalable.
文摘The dimensionality of data is increasing very rapidly,which creates challenges for most of the current mining and learning algorithms,such as large memory requirements and high computational costs.The literature includes much research on feature selection for supervised learning.However,feature selection for unsupervised learning has only recently been studied.Finding the subset of features in unsupervised learning that enhances the performance is challenging since the clusters are indeterminate.This work proposes a hybrid technique for unsupervised feature selection called GAk-MEANS,which combines the genetic algorithm(GA)approach with the classical k-Means algorithm.In the proposed algorithm,a new fitness func-tion is designed in addition to new smart crossover and mutation operators.The effectiveness of this algorithm is demonstrated on various datasets.Fur-thermore,the performance of GAk-MEANS has been compared with other genetic algorithms,such as the genetic algorithm using the Sammon Error Function and the genetic algorithm using the Sum of Squared Error Function.Additionally,the performance of GAk-MEANS is compared with the state-of-the-art statistical unsupervised feature selection techniques.Experimental results show that GAk-MEANS consistently selects subsets of features that result in better classification accuracy compared to others.In particular,GAk-MEANS is able to significantly reduce the size of the subset of selected features by an average of 86.35%(72%–96.14%),which leads to an increase of the accuracy by an average of 3.78%(1.05%–6.32%)compared to using all features.When compared with the genetic algorithm using the Sammon Error Function,GAk-MEANS is able to reduce the size of the subset of selected features by 41.29%on average,improve the accuracy by 5.37%,and reduce the time by 70.71%.When compared with the genetic algorithm using the Sum of Squared Error Function,GAk-MEANS on average is able to reduce the size of the subset of selected features by 15.91%,and improve the accuracy by 9.81%,but the time is increased by a factor of 3.When compared with the machine-learning based methods,we observed that GAk-MEANS is able to increase the accuracy by 13.67%on average with an 88.76%average increase in time.
文摘The K-means method is one of the most widely used clustering methods and has been implemented in many fields of science and technology. One of the major problems of the k-means algorithm is that it may produce empty clusters depending on initial center vectors. Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary principles of natural selection and genetics. This paper presents a hybrid version of the k-means algorithm with GAs that efficiently eliminates this empty cluster problem. Results of simulation experiments using several data sets prove our claim.
基金funded by the Science and Technology Project of State Grid Sichuan Electric Power Company(521996230008).
文摘Vigorously developing flexible resources in power systems will be the key to building a new power system and realizing energy trans-formation.The investment construction cost and operation cost of various flexible resources are different,and the adjustment ability is different in different timescales.Therefore,the optimization of complementary allocation of various resources needs to take into account the economy and adjustment ability of different resources.In this paper,the global K-means load clustering model is pro-posed and the 365-day net load is reduced to eight typical daily net loads by clustering.Secondly,a two-level optimization model of flexible resource complementary allocation considering wind power and photovoltaic consumption is constructed.The flexible resources involved include the flexible transformation of thermal power,hydropower,pumped storage,energy storage,and demand response.The upper-layer model optimizes the capacity allocation of various flexible resources with the minimum investment and construction cost as the goal and the lower layer optimizes the operating output of various units with the minimum operating cost as the goal.The results of the example analysis show that the flexible capacity of thermal power units has nothing to do with the abandonment rate of renewable energy.As the abandonment rate of renewable energy decreases,the optimal capacity of pumped storage,electrochemical energy storage,and hydropower units increases.When the power-abandonment rate of renewable energy is 5%,the optimal allocation capacity of thermal power flexibility transformation,pumped storage,electrochemical energy storage,hydropower unit,and adjustable load in Province A is 5313,17090,5830,72113,and 4250 MW,respectively.Under the condition that the renewable-energy abandonment rate is 0,5%,and 10%respectively,the configured capacity of pumped storage is 20000,17090,and 14847 MW,respectively.
文摘Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts.
基金Deanship of scientific research for funding and supporting this research through the initiative of DSR Graduate Students Research Support(GSR).
文摘Mobile commerce(m-commerce)contributes to increasing the popularity of electronic commerce(e-commerce),allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time.As demand for e-commerce increases tremendously,the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction.One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem(MVPPDP),where a selected set of pickup and delivery customers need to be served within certain allowed trip time.In this paper,we proposed hybrid clustering algorithms with the greedy randomised adaptive search procedure(GRASP)to construct an initial solution for the MVPPDP.Our approaches first cluster the search space in order to reduce its dimensionality,then use GRASP to build routes for each cluster.We compared our results with state-of-the-art construction heuristics that have been used to construct initial solutions to this problem.Experimental results show that our proposed algorithms contribute to achieving excellent performance in terms of both quality of solutions and processing time.
文摘This paper presents a new algorithm for solving unit commitment (UC) problems using a binary-real coded genetic algorithm based on k-means clustering technique. UC is a NP-hard nonlinear mixed-integer optimization problem, encountered as one of the toughest problems in power systems, in which some power generating units are to be scheduled in such a way that the forecasted demand is met at minimum production cost over a time horizon. In the proposed algorithm, the algorithm integrates the main features of a binary-real coded genetic algorithm (GA) and k-means clustering technique. The binary coded GA is used to obtain a feasible commitment schedule for each generating unit;while the power amounts generated by committed units are determined by using real coded GA for the feasible commitment obtained in each interval. k-means clustering algorithm divides population into a specific number of subpopulations with dynamic size. In this way, using k-means clustering algorithm allows the use of different GA operators with the whole population and avoids the local problem minima. The effectiveness of the proposed technique is validated on a test power system available in the literature. The proposed algorithm performance is found quite satisfactory in comparison with the previously reported results.
基金This work is financially supported by the National Natural Science Foundation of China (Grant No. 41572347).
文摘Clustering algorithm, which is a statistical analysis method for research in classifications, plays an important role in data mining algorithm. Clustering algorithm based on similarity, and is easy to combine with other methods in optimization. In this review, signal clustering algorithm is introduced by discussing of the clustering parametric in different signal clustering algorithms. In order to develop traditional algorithm, we introduce a series of improvement, development and application of the methods in recent years. Finally, we make an outlook of the future direction and content of the research in this field.
文摘Classifying the data into a meaningful group is one of the fundamental ways of understanding and learning the valuable information. High-quality clustering methods are necessary for the valuable and efficient analysis of the increasing data. The Firefly Algorithm (FA) is one of the bio-inspired algorithms and it is recently used to solve the clustering problems. In this paper, Hybrid F-Firefly algorithm is developed by combining the Fuzzy C-Means (FCM) with FA to improve the clustering accuracy with global optimum solution. The Hybrid F-Firefly algorithm is developed by incorporating FCM operator at the end of each iteration in FA algorithm. This proposed algorithm is designed to utilize the goodness of existing algorithm and to enhance the original FA algorithm by solving the shortcomings in the FCM algorithm like the trapping in local optima and sensitive to initial seed points. In this research work, the Hybrid F-Firefly algorithm is implemented and experimentally tested for various performance measures under six different benchmark datasets. From the experimental results, it is observed that the Hybrid F-Firefly algorithm significantly improves the intra-cluster distance when compared with the existing algorithms like K-means, FCM and FA algorithm.
文摘In this paper, we propose a K-means clustering-based integral level-value estimation algorithm to solve a kind of box-constrained global optimization problem. For this purpose, we introduce the generalized variance function associated with the level-value of the objective function to be minimized. The variance function has a good property when Newton’s method is used to solve a variance equation resulting by setting the variance function to zero. We prove that the largest root of the variance equation is equal to the global minimum value of the corresponding optimization problem. Based on the K-means clustering algorithm, the multiple importance sampling technique is proposed in the implementable algorithm. The main idea of the cross-entropy method is used to update the parameters of sampling density function. The asymptotic convergence of the algorithm is proved, and the validity of the algorithm is verified by numerical experiments.
基金Supported by the National Natural Science Foundation of China (No. 61003198, 60703108, 60703109, 60702062,60803098)the National High Technology Development 863 Program of China (No. 2008AA01Z125, 2009AA12Z210)+1 种基金the China Postdoctoral Science Foundation funded project (No. 20090460093)the Provincial Natural Science Foundation of Shaanxi, China (No. 2009JQ8016)
文摘The performance of the classical clustering algorithm is not always satisfied with the high-dimensional datasets, which make clustering method limited in many application. To solve this problem, clustering method with Projection Pursuit dimension reduction based on Immune Clonal Selection Algorithm (ICSA-PP) is proposed in this paper. Projection pursuit strategy can maintain consistent Euclidean distances between points in the low-dimensional embeddings where the ICSA is used to search optimizing projection direction. The proposed algorithm can converge quickly with less iteration to reduce dimension of some high-dimensional datasets, and in which space, K-mean clustering algorithm is used to partition the reduced data. The experiment results on UCI data show that the presented method can search quicker to optimize projection direction than Genetic Algorithm (GA) and it has better clustering results compared with traditional linear dimension reduction method for Principle Component Analysis (PCA).
文摘Data analysis and automatic processing is often interpreted as knowledge acquisition. In many cases it is necessary to somehow classify data or find regularities in them. Results obtained in the search of regularities in intelligent data analyzing applications are mostly represented with the help of IF-THEN rules. With the help of these rules the following tasks are solved: prediction, classification, pattern recognition and others. Using different approaches---clustering algorithms, neural network methods, fuzzy rule processing methods--we can extract rules that in an understandable language characterize the data. This allows interpreting the data, finding relationships in the data and extracting new rules that characterize them. Knowledge acquisition in this paper is defined as the process of extracting knowledge from numerical data in the form of rules. Extraction of rules in this context is based on clustering methods K-means and fuzzy C-means. With the assistance of K-means, clustering algorithm rules are derived from trained neural networks. Fuzzy C-means is used in fuzzy rule based design method. Rule extraction methodology is demonstrated in the Fisher's Iris flower data set samples. The effectiveness of the extracted rules is evaluated. Clustering and rule extraction methodology can be widely used in evaluating and analyzing various economic and financial processes.
文摘This paper discusses a comparative study of two modeling methods based on multimodel approach. The first is based on C-means clustering algorithm and the second is based on K-means clustering algorithm. The two methods are experimentally applied to an induction motor. The multimodel modeling consists in representing the IM through a finite number of local models. This number of models has to be initially fixed, for which a subtractive clustering is necessary. Then both C-means and K-means clustering are exploited to determine the clusters. These clusters will be then exploited on the basis of structural and parametric identification to determine the local models that are combined, finally, to form the multimodel. The experimental study is based on MATLAB/SIMULINK environment and a DSpace scheme with DS1104 controller board. Experimental results approve that the multimodel based on K-means clustering algorithm is the most efficient.