期刊文献+
共找到17,109篇文章
< 1 2 250 >
每页显示 20 50 100
Cell-free biocatalysis coupled with photo-catalysis and electro-catalysis: Efficient CO_(2)-to-chemical conversion
1
作者 Junzhu Yang Chi-Kit Sou Yuan Lu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1366-1383,共18页
The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added valu... The increasing atmospheric carbon dioxide (CO_(2)) concentration has exposed a series of crises in the earth's ecological environment.How to effectively fix and convert carbon dioxide into products with added value has attracted the attention of many researchers.Cell-free enzyme catalytic system coupled with electrical and light have been a promising attempt in the field of biological carbon fixation in recent years.In this review,the research progresses of photoenzyme catalysis,electroenzyme catalysis and photo-electroenzyme catalysis for converting carbon dioxide into chemical products in cell-free systems are systematically summarized.We focus on reviewing and comparing various coupling methods and principles of photoenzyme catalysis and electroenzyme catalysis in cell-free systems,especially the materials used in the construction of the coupling system,and analyze and point out the characteristics and possible problems of different coupling methods.Finally,we discuss the major challenges and prospects of coupling physical signals and cell-free enzymatic catalytic systems in the field of CO_(2) fixation,suggesting possible strategies to improve the carbon sequestration capacity of such systems. 展开更多
关键词 co_(2)fixation Cell-free system Enzyme Photoenzyme catalysis Electroenzyme catalysis
下载PDF
Cobalt phthalocyanine promoted copper catalysts toward enhanced electro reduction of CO_(2)to C_(2):Synergistic catalysis or tandem catalysis?
2
作者 Yan Luo Jun Yang +6 位作者 Jundi Qin Kanghua Miao Dong Xiang Aidar Kuchkaev Dmitry Yakhvarov Chuansheng Hu Xiongwu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期499-507,共9页
The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and deba... The activity and selectivity of electrocatalytic CO_(2)reduction reaction(CO_(2)RR)to C_(2)products on metal catalysts can be regulated by molecular surfactants.However,the mechanism behind it remains elusive and debatable.Herein,copper nanowires(Cu NWs)were fabricated and decorated with cobalt phthalocyanine(CoPc).The electronic interaction between the Cu NWs,CoPc,CO_(2) and CO_(2)RR intermediates were explored by density functional theory(DFT)calculations.It was found that the selectivity and activity of CO_(2)RR towards C_(2)products on Cu NWs were considerably enhanced from 35.2%to 69.9%by surface decoration of CoPc.DFT calculations revealed that CO_(2)RR can proceed in the interphase between Cu substrate and CoPc,and the CO_(2)RR intermediates could synergistically bond with both Cu and Co metal centre in CuNWs-CoPc,which favours the adsorption of CO_(2),CO and CO_(2)RR intermediates,thus reducing the free energy for CO-COcoupling towards C_(2)products.The synergistic interaction was further extended to phthalocyanine(Pc)and other metal phthalocyanine derivatives(MPc),where a relatively weaker synergistic interaction of COintermediates with MPc and Cu substrate and only a slight enhancement of CO_(2)RR towards C_(2) products were observed.This study demonstrates a synergistic catalysis pathway for CO_(2)RR,a novel perspective in interpreting the role of CoPc in enhancing the activity and selectivity of CO_(2)RR on Cu NWs,in contrast to the conventional tandem catalysis mechanism. 展开更多
关键词 co_(2)reduction reaction Raman spectroscopy Synergistic catalysis DFT calculation
下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization 被引量:1
3
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 Biomass conversion Heterogeneous catalysis LiGNiN Dual-atom catalyst Selective C-ocleavage
下载PDF
Mo_(12)Bi_(1.2)Fe_(3)Co_(8)K_(0.4)用于异丁烯气相氧化制甲基丙烯醛
4
作者 王加升 王庆荣 +1 位作者 吴友根 包明 《精细化工》 EI CAS CSCD 北大核心 2024年第8期1774-1779,共6页
以(NH_(4))_(6)Mo_(7)O_(24)·4H_(2)O、Bi(NO_(3))_(3)·5H_(2)O、Fe(NO_(3))_(3)·9H_(2)O、Co(NO_(3))_(2)·6H_(2)O和KNO_(3)为前驱体金属盐,通过共沉淀法制备了一系列MoBiFeCoK混合氧化物催化剂,考察了主金属Mo、... 以(NH_(4))_(6)Mo_(7)O_(24)·4H_(2)O、Bi(NO_(3))_(3)·5H_(2)O、Fe(NO_(3))_(3)·9H_(2)O、Co(NO_(3))_(2)·6H_(2)O和KNO_(3)为前驱体金属盐,通过共沉淀法制备了一系列MoBiFeCoK混合氧化物催化剂,考察了主金属Mo、Bi,助金属Fe、Co和掺杂金属K含量对催化剂催化异丁烯气相氧化反应的影响,通过SEM、EDX、XRD、NH_(3)-TPD对掺杂K前后的催化剂进行了表征,同时对催化异丁烯气相氧化反应条件进行了优化,并测试其100 h的催化稳定性。结果表明,Bi、Fe、Co和K的含量对MoBiFeCoK混合氧化物催化剂催化异丁烯气相氧化反应的性能有显著影响,其中,Mo_(12)Bi_(1.2)Fe_(3)Co_(8)K_(0.4)表现出最优催化性能;K的掺杂降低了催化剂酸量(从Mo12Bi1.2Fe3Co8的15.27μmol/g降至Mo_(12)Bi_(1.2)Fe_(3)Co_(8)K_(0.4)的5.91μmol/g),并明显提升主产物甲基丙烯醛(MAL)的选择性;异丁烯气相氧化反应的最佳条件为:以0.66 g Mo_(12)Bi_(1.2)Fe_(3)Co_(8)K_(0.4)为催化剂,反应温度320℃,n(O_(2))∶n(异丁烯)(氧烯比)=10∶1,体积空速(GHSV)=2000h^(-1)。在该条件下,Mo_(12)Bi_(1.2)Fe_(3)Co_(8)K_(0.4)在100h的催化异丁烯气相氧化反应中表现稳定,异丁烯转化率保持在98.6%,MAL选择性保持在86.4%。 展开更多
关键词 甲基丙烯醛 选择性氧化 异丁烯 K掺杂 催化技术
原文传递
基于CO_(2)活化的竹基多孔炭催化还原Cr(VI)的性能研究
5
作者 连媛 王汉琛 +3 位作者 方兆丰 何晨露 黄彪 林冠烽 《林产化学与工业》 CAS CSCD 北大核心 2024年第3期61-68,共8页
以竹粉为原料、CO_(2)为活化剂制备竹基多孔炭(ZH-100),并用于催化还原Cr(VI)。分析了反应温度、催化剂用量、还原剂甲酸用量、Cr(VI)初始质量浓度对竹基多孔炭催化活性的影响,采用XPS、XRD和交流阻抗测试技术对反应前后的多孔炭进行表... 以竹粉为原料、CO_(2)为活化剂制备竹基多孔炭(ZH-100),并用于催化还原Cr(VI)。分析了反应温度、催化剂用量、还原剂甲酸用量、Cr(VI)初始质量浓度对竹基多孔炭催化活性的影响,采用XPS、XRD和交流阻抗测试技术对反应前后的多孔炭进行表征,以揭示其催化还原Cr(VI)的作用机制。结果表明:竹基多孔炭催化还原Cr(VI)的最佳实验条件为Cr(VI)初始质量浓度120 mg/L、温度60℃、ZH-100炭催化剂添加量0.1 g,还原剂甲酸添加量1.5 mL,在该条件下反应10 min,Cr(VI)还原率高达99.44%;重复使用3次后,ZH-100的催化还原能力略有下降,但仍能在30 min内达到99.22%的Cr(VI)还原率。分析发现,Cr(VI)的去除过程包括物理吸附和化学还原,其中以化学还原占主导;催化剂重复使用性能下降原因包括表面官能团消耗、碳微晶排列无序化及阻抗增大,ZH-100对Cr(VI)的催化还原机制为官能团介导和类石墨微晶介导。 展开更多
关键词 竹粉 竹基多孔炭 催化
下载PDF
Lewis酸碱调控镧掺杂氧化锌催化CO_(2)转化制碳酸乙烯酯
6
作者 杜昌元 苏倩 +3 位作者 许振洋 付梦倩 贾松岩 董丽 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第3期305-312,共8页
本研究以CO_(2)和乙二醇(EG)合成碳酸乙烯酯(EC)为目标,设计合成一系列La掺杂ZnO催化剂,可对ZnO表面Lewis酸碱性位点调控,并在无助剂条件下研究了催化剂活性。La-ZnO-1%-550℃具有最好的催化活性,在130℃、4 MPa CO_(2)、1 h条件下,EG... 本研究以CO_(2)和乙二醇(EG)合成碳酸乙烯酯(EC)为目标,设计合成一系列La掺杂ZnO催化剂,可对ZnO表面Lewis酸碱性位点调控,并在无助剂条件下研究了催化剂活性。La-ZnO-1%-550℃具有最好的催化活性,在130℃、4 MPa CO_(2)、1 h条件下,EG的转化率为0.54%,EC的时空收率和选择性分别为7.326 mmol/(h·g)和99%,并具有良好的稳定性。结合对催化剂的晶体结构、形貌和表面酸碱性等分析,结果显示,La均匀分布在ZnO中空纳米片中,经过550℃煅烧的La掺杂ZnO的表面具有最多的Lewis酸碱性位点,催化剂的催化活性随中强Lewis酸碱性位点增多而升高。 展开更多
关键词 co_(2) ZNO 碳酸乙烯酯 Lewis酸碱催化
下载PDF
CNT-Co/Bi_(2)O_(3)催化剂光催化协同过硫酸盐活化高效降解四环素
7
作者 张佳颖 王聪 王雅君 《化工学报》 EI CSCD 北大核心 2024年第9期3163-3175,共13页
在过硫酸盐高级氧化技术中,Co^(2+)的再生效率低是Co高效活化过一硫酸盐(PMS)的主要问题。成功制备了富含氧缺陷氧化铋负载碳纳米管(x%CNT-Co/Bi_(2)O_(3))光催化剂,用于光催化协同过硫酸盐活化降解污染物。在紫外线照射下,催化剂添加量... 在过硫酸盐高级氧化技术中,Co^(2+)的再生效率低是Co高效活化过一硫酸盐(PMS)的主要问题。成功制备了富含氧缺陷氧化铋负载碳纳米管(x%CNT-Co/Bi_(2)O_(3))光催化剂,用于光催化协同过硫酸盐活化降解污染物。在紫外线照射下,催化剂添加量为20 mg/L、PMS浓度为0.5 mmol/L和初始p H为4.68时,70%CNT-Co/Bi_(2)O_(3)对四环素(TC)的降解率高达91.3%,具有优异的可重复利用性和稳定性。其降解活性的提高归因于CNT-Co具有极大的比表面积,有利于TC吸附,光生电子加速Co^(2+)→Co^(3+)→Co^(2+)的循环速率,既促进光生电荷的分离与迁移,又促进PMS的活化,实现TC的快速降解。此外,Bi_(2)O_(3)均匀分散在CNT-Co外管壁上,避免了Bi_(2)O_(3)纳米颗粒的团聚,CNT-Co具有较大的比表面积,有利于污染物吸附于催化剂表面,增加吸附效果。该体系产生多种活性物种,其贡献度为^(1)O_(2)>·SO_(4)^(-)>·OH>·O_(2)^(-),可实现自由基和非自由基双通路高效降解污染物。 展开更多
关键词 活化 催化 降解 四环素 CNT-co Bi_(2)O_(3)
下载PDF
Effects of Catalysis and Separator Functionalization on High-Energy Lithium–Sulfur Batteries:A Complete Review 被引量:5
8
作者 Muhammad Kashif Aslam Sidra Jamil +1 位作者 Shahid Hussain Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期333-355,共23页
Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising nex... Lithium–sulfur(Li-S)batteries have the advantages of high theoretical specific capacity(1675 mAh g^(−1)),rich sulfur resources,low production cost,and friendly environment,which makes it one of the most promising next-generation rechargeable energy storage devices.However,the“shuttle effect”of polysulfide results in the passivation of metal lithium anode,the decrease of battery capacity and coulombic efficiency,and the deterioration of cycle stability.To realize the commercialization of Li-S batteries,its serious“shuttle effect”needs to be suppress.The commercial separators are ineffective to suppress this effect because of its large pore size.Therefore,it is an effective strategy to modify the separator surface and introduce functional modified layer.In addition to the blocking strategy,the catalysis of polysulfide conversion reaction is also an important factor hindering the migration of polysulfides.In this review,the principles of separator modification,functionalization,and catalysis in Li-S batteries are reviewed.Furthermore,the research trend of separator functionalization and polysulfide catalysis in the future is prospected. 展开更多
关键词 catalysis Li-S batteries POLYSULFiDES separator functionalization shuttle effect
下载PDF
Fluorine-Modulated MXene-Derived Catalysts for Multiphase Sulfur Conversion in Lithium-Sulfur Battery
9
作者 Qinhua Gu Yiqi Cao +5 位作者 Junnan Chen Yujie Qi Zhaofeng Zhai Ming Lu Nan Huang Bingsen Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期201-216,共16页
Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides... Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities;as a result,there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries.Nonetheless,the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries.Whether fluorine modulation regulate the reaction process of Li-S chemistry?Here,the TiOF/Ti_(3)C_(2)MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method.Relying on in situ characterizations and electrochemical analysis,the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction.The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism,which contributes to the adsorption of polysulfides,provides more nucleation sites and promotes the cleavage of S-S bonds.This facilitates the deposition of Li_(2)S at lower overpotentials.Additionally,fluorine has the capacity to capture electrons originating from Li_(2)S dissolution due to charge compensation mechanisms.The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes. 展开更多
关键词 catalysis FLUORiNATiON MXene Lithium-sulfur battery Shuttle effect
下载PDF
Production of linear alkylbenzene over Ce containing Beta zeolites
10
作者 Shiqi Zhang Shengzhi Gan +1 位作者 Baoyu Liu Jinxiang Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期220-227,共8页
Ce-encapsulated Beta zeolite was synthesized by a one-pot hydrothermal method with citric acid complexing Ce in the absence of Na species.Additional citric acid can effectively prevent the deposition of Ce species dur... Ce-encapsulated Beta zeolite was synthesized by a one-pot hydrothermal method with citric acid complexing Ce in the absence of Na species.Additional citric acid can effectively prevent the deposition of Ce species during the hydrothermal synthesis of zeolites,leading to uniform distribution of Ce cluster in the framework of Beta zeolites.Moreover,the sodium-free synthesis system resulted that the Brønsted acid sites were mainly located on the straight channels and external surface of Beta zeolites,improving the utilization of Brønsted acid sites.In addition,Ce encapsulated Beta zeolites showed enhanced activity and robust stability in the alkylation of benzene with 1-dodecene based on the synergistic effect between Ce species and Brønsted acid sites,which pave the way for its practical application in the production of alkylbenzene. 展开更多
关键词 Beta zeolites catalysis ALKYLATiON Long-chain olefins
下载PDF
Mg掺杂In_(2)O_(3)-x催化剂光热催化CO_(2)加氢
11
作者 李纹龙 贾忻宇 +2 位作者 凌洁 马梦丹 周安宁 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第5期919-929,共11页
为提高光热催化CO_(2)加氢In_(2)O_(3)催化剂的催化活性,采用均相水热法制备Mg(OH)_(2)-In(OH)_(3)前驱体,通过高温煅烧和H2-还原处理得到了富含氧空位的Mg掺杂In_(2)O_(3)-x(Mg-In_(2)O_(3)-x)催化剂。在300℃、常压、可见光照射条件下... 为提高光热催化CO_(2)加氢In_(2)O_(3)催化剂的催化活性,采用均相水热法制备Mg(OH)_(2)-In(OH)_(3)前驱体,通过高温煅烧和H2-还原处理得到了富含氧空位的Mg掺杂In_(2)O_(3)-x(Mg-In_(2)O_(3)-x)催化剂。在300℃、常压、可见光照射条件下,CO_(2)加氢转化为CO的CO_(2)转化率可达31.20%,CO产生速率为14.22 mmol·gcat^(-1)·h^(-1),CO选择性为100%。相比于单一In_(2)O_(3)-x催化剂,Mg-In_(2)O_(3)-x催化剂光热催化CO_(2)转化率及CO产生速率明显提高,这归因于Mg成功掺杂到In_(2)O_(3)晶格中,促进In_(2)O_(3)表面氧空位的形成,进而对可见光响应效率大幅提高,并有效减缓光生电子-空穴的复合。 展开更多
关键词 氧化铟 光热催化 co_(2)加氢 掺杂 氧空位
下载PDF
Non-Gaussian quantum states generated via quantum catalysis and their statistical properties
12
作者 张晓燕 杨春燕 +1 位作者 王继锁 孟祥国 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期332-337,共6页
A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state d... A new kind of non-Gaussian quantum catalyzed state is proposed via multiphoton measurements and two-mode squeezing as an input of thermal state.The characteristics of the generated multiphoton catalysis output state depends on the thermal parameter,catalyzed photon number and squeezing parameter.We then analyze the nonclassical properties by examining the photon number distribution,photocount distribution and partial negativity of the Wigner function.Our findings indicate that nonclassicality can be achieved through the implementation of multiphoton catalysis operations and modulated by the thermal parameter,catalyzed photon number and squeezing parameter. 展开更多
关键词 two-mode squeezing multiphoton catalysis NONCLASSiCALiTY Wigner function
原文传递
Multifunctional SnO_(2) QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior
13
作者 Shungui Deng Weiwei Sun +4 位作者 Jiawei Tang Mohammad Jafarpour Frank Nüesch Jakob Heier Chuanfang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期156-169,共14页
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi... Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics. 展开更多
关键词 Lithium-sulfur battery Heterogeneous catalysis Heterostructure Redox kinetics Lithium dendrites
下载PDF
Efficient hydrogenolysis of fructose to 1,2-propanediol over bifunctional Ru-WO_(x)-MgO_(y) catalysts under mild reaction conditions via enhancing the chemoselective cleavage of C-C bonds
14
作者 Shuang Luo Tie Shu +6 位作者 Min Mao Haijie Yu Yuxin Zheng Daqian Ding Lingmei Liu Kexin Yao Jianjian Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期311-321,共11页
Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low e... Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low efficiency and harsh reaction conditions.Here,we have successfully synthesized a novel bifunctional Ru-WO_(x)-MgO_(y) catalyst through a facile'one-pot'solvothermal method.Remarkably,this catalyst exhibits exceptional catalytic performances in the conversion of fructose to 1,2-PDO under mild reaction conditions.The yield of 1,2-PDO is up to 56.2%at 140°C for 4 h under an ultra-low hydrogen pressure of only 0.2 MPa,surpassing the reported results in recent literature(below 51%).Comprehensive characterizations and density functional theory(DFT)calculations reveal that the presence of oxygen vacancies in the Ru-WO_(x)-MgO_(y) catalyst,serving as active acidic sites,facilitates the chemoselective cleavage of C-C bonds in fructose,which leads to the generation of active intermediates and ultimately resulted in the high yield of 1,2-PDO. 展开更多
关键词 Biomass FRUCTOSE 1 2-PROPANEDiOL Retroaldol condensation Heterogenous catalysis
下载PDF
Construction of a Cu@hollow TS-1 nanoreactor based on a hierarchical full-spectrum solar light utilization strategy for photothermal synergistic artificial photosynthesis
15
作者 Sixian Zhu Qiao Zhao +5 位作者 Hongxia Guo Li Liu Xiao Wang Xiwei Qi Xianguang Meng Wenquan Cui 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期25-36,共12页
The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosyn... The artificial photosynthesis technology has been recognized as a promising solution for CO_(2) utilization.Photothermal catalysis has been proposed as a novel strategy to promote the efficiency of artificial photosynthesis by coupling both photochemistry and thermochemistry.However,strategies for maximizing the use of solar spectra with different frequencies in photothermal catalysis are urgently needed.Here,a hierarchical full-spectrum solar light utilization strategy is proposed.Based on this strategy,a Cu@hollow titanium silicalite-1 zeolite(TS-1)nanoreactor with spatially separated photo/thermal catalytic sites is designed to realize high-efficiency photothermal catalytic artificial photosynthesis.The space-time yield of alcohol products over the optimal catalyst reached 64.4μmol g−1 h−1,with the selectivity of CH3CH2OH of 69.5%.This rationally designed hierarchical utilization strategy for solar light can be summarized as follows:(1)high-energy ultraviolet light is utilized to drive the initial and difficult CO_(2) activation step on the TS-1 shell;(2)visible light can induce the localized surface plasmon resonance effect on plasmonic Cu to generate hot electrons for H2O dissociation and subsequent reaction steps;and(3)low-energy near-infrared light is converted into heat by the simulated greenhouse effect by cavities to accelerate the carrier dynamics.This work provides some scientific and experimental bases for research on novel,highly efficient photothermal catalysts for artificial photosynthesis. 展开更多
关键词 artificial photosynthesis full spectrum NANOREACTORS photothermal catalysis
下载PDF
Progress in the research on organic piezoelectric catalysts for dye decomposition
16
作者 Zhaoning Yang Xiaoxin Shu +3 位作者 Di Guo Jing Wang Hui Bian Yanmin Jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期245-260,共16页
Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminan... Organic contaminants have posed a direct and substantial risk to human wellness and the environment.In recent years,piezo-electric catalysis has evolved as a novel and effective method for decomposing these contaminants.Although piezoelectric materials offer a wide range of options,most related studies thus far have focused on inorganic materials and have paid little attention to organic materi-als.Organic materials have advantages,such as being lightweight,inexpensive,and easy to process,over inorganic materials.Therefore,this paper provides a comprehensive review of the progress made in the research on piezoelectric catalysis using organic materials,high-lighting their catalytic efficiency in addressing various pollutants.In addition,the applications of organic materials in piezoelectric cata-lysis for water decomposition to produce hydrogen,disinfect bacteria,treat tumors,and reduce carbon dioxide are presented.Finally,fu-ture developmental trends regarding the piezoelectric catalytic potential of organic materials are explored. 展开更多
关键词 piezoelectric catalysis piezoelectric material dye decomposition organic materials
下载PDF
Identification of origin of insulating polymer maneuvered photoredox catalysis
17
作者 Qiao-Ling Mo Rui Xiong +5 位作者 Jun-Hao Dong Bai-Sheng Sa Jing-Ying Zheng Qing Chen Yue Wu Fang-Xing Xiao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期109-123,共15页
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has... Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion. 展开更多
关键词 insulating polymer Charge transfer Photoredox catalysis POLYELECTROLYTE SELF-ASSEMBLY
下载PDF
Ordered mesoporous materials for water pollution treatment:Adsorption and catalysis
18
作者 Peng Zhang Mingming He +4 位作者 Wei Teng Fukuan Li Xinyuan Qiu Kexun Li Hao Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1239-1256,共18页
To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environment... To meet the growing emission of water contaminants,the development of new materials that enhance the efficiency of the water treatment system is urgent.Ordered mesoporous materials provide opportunities in environmental processing applications due to their exceptionally high surface areas,large pore sizes,and enough pore volumes.These properties might enhance the performance of materials concerning adsorption/catalysis capability,durability,and stability.In this review,we enumerate the ordered mesoporous materials as adsorbents/catalysts and their modifications in water pollution treatment from the past decade,including heavy metals(Hg^(2+),Pb^(2+),Cd^(2+),Cr^(6+),etc.),toxic anions(nitrate,phosphate,fluoride,etc.),and organic contaminants(organic dyes,antibiotics,etc.).These contributions demonstrate a deep understanding of the synergistic effect between the incorporated framework and homogeneous active centers.Besides,the challenges and perspectives of the future developments of ordered mesoporous materials in wastewater treatment are proposed.This work provides a theoretical basis and complete summary for the application of ordered mesoporous materials in the removal of contaminants from aqueous solutions. 展开更多
关键词 Water pollution treatment Ordered mesoporous materials Toxic contaminants ADSORPTiON catalysis
下载PDF
Efficient Direct Decomposition of NO over La_(0.8)A_(0.2)NiO_(3)(A=K, Ba, Y) Catalysts under Microwave Irradiation
19
作者 王浩 ZHAO Zijian +1 位作者 DUAN Xinghui ZHOU Shijia 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期17-23,共7页
La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(... La_(0.8)A_(0.2)NiO_(3) (A=K,Ba,Y) catalysts supported on the microwave-absorbing ceramic heating carrier were prepared by the sol-gel method.The crystalline phase and the catalytic activity of the La_(0.8)A_(0.2)NiO_(3)catalysts were characterized by XRD and H_(2) temperature-programmed reduction (TPR).The effects of reaction temperature,oxygen concentration,and gas flow rate on the direct decomposition of nitric oxide over the synthesized catalysts were studied under microwave irradiation (2.45 GHz).The XRD results indicated that the La_(0.8)A_(0.2)NiO_(3) catalysts formed an ABO_(3) perovskite structure,and the H_(2)-TPR results revealed that the relative reducibility of the catalysts increased in the order of La_(0.8)K_(0.2)NiO_(3)>La_(0.8)Ba_(0.2)NiO_(3)>La_(0.8)Y_(0.2)Ni O_(3).Under microwave irradiation,the highest NO conversion amounted to 98.9%,which was obtained with the La_(0.8)K_(0.2)NiO_(3) catalyst at 400℃.The oxygen concentration did not inhibit the NO decomposition on the La_(0.8)A_(0.2)NiO_(3) catalysts,thus the N_(2) selectivity exceeded 99.8%under excess oxygen at 550℃.The NOconversion of the La_(0.8)A_(0.2)NiO_(3) catalysts decreased linearly with the increase in the gas flow rate. 展开更多
关键词 microwave catalysis direct decomposition of NO microwave-absorbing heating ceramics perovskite catalyst
原文传递
Operationally Simple Enantioselective Silane Reduction of Ketones by the [Ir(OMe)(cod)]2/Azolium Catalytic System
20
作者 Satoshi Sakaguchi Chika Nagao +1 位作者 Ryo Ichihara Shogo Matsuo 《International Journal of Organic Chemistry》 2024年第1期1-19,共19页
An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal ... An operationally simple protocol was designed for the enantioselective silane reduction (ESR) of ketones using air- and moisture-stable [Ir(OMe)(cod)]<sub>2</sub> (cod = 1,5-cyclooctadiene) (3) as a metal catalyst precursor. This reaction was driven by chiral hydroxyamide-functionalized azolium salt 2. The catalytic ESR reaction could be performed under benchtop conditions at room temperature. Treatment of 2 with 3 in THF yielded the monodentate IrCl(NHC)(cod) (NHC = N-heterocyclic carbene) complex 4 in 93% yield, herein the anionic methoxy ligand of 3 serves as an internal base that deprotonates the azolium ring of 2. The well-defined Ir complex 4 catalyzed the ESR reaction of propiophenone (6) with (EtO)<sub>2</sub>MeSiH using the pre-mixing reaction procedure. Based on this success, the catalytic ESR reaction was designed and implemented using an in situ-generated NHC/Ir catalyst derived from 2 and 3. Thus, a wide variety of aryl ketones could be reduced to the corresponding optically active alcohols in moderate to excellent stereoselectivities at room temperature without temperature control. Since the high catalytic activity of 3 was observed, we next evaluated several other transition metal catalyst precursors for the catalytic ESR reaction under the influence of 2. This evaluation revealed that Ir(acac)(cod) (acac = acetylacetonate) (28) and [IrCl(cod)]<sub>2</sub> (5) can be successfully used as metal catalyst precursors in the ESR reaction. 展开更多
关键词 Asymmetric catalysis Enantioselective Reduction Hydrosilylation Reaction N-Heterocyclic Carbene iRiDiUM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部