The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
Active message is an efficient and versatile communication architecture. The high performance ofit is closely related to the choices made in implementing. This paper discusses the mechanism of active message and consi...Active message is an efficient and versatile communication architecture. The high performance ofit is closely related to the choices made in implementing. This paper discusses the mechanism of active message and considerations should be taken in implementation. We propose improvements in method of message reception and buffer management. Programming model and method using active message arc also discussed.展开更多
Tiered Mobile Wireless Sensor Network(TMWSN)is a new paradigm introduced by mobile edge computing.Now it has received wide attention because of its high scalability,robustness,deployment flexibility,and it has a wide ...Tiered Mobile Wireless Sensor Network(TMWSN)is a new paradigm introduced by mobile edge computing.Now it has received wide attention because of its high scalability,robustness,deployment flexibility,and it has a wide range of application scenarios.In TMWSNs,the storage nodes are the key nodes of the network and are more easily captured and utilized by attackers.Once the storage nodes are captured by the attackers,the data stored on them will be exposed.Moreover,the query process and results will not be trusted any more.This paper mainly studies the secure KNN query technology in TMWSNs,and we propose a secure KNN query algorithm named the Basic Algorithm For Secure KNN Query(BAFSKQ)first,which can protect privacy and verify the integrity of query results.However,this algorithm has a large communication overhead in most cases.In order to solve this problem,we propose an improved algorithm named the Secure KNN Query Algorithm Based on MR-Tree(SEKQAM).The MR-Trees are used to find the K-nearest locations and help to generate a verification set to process the verification of query results.It can be proved that our algorithms can effectively guarantee the privacy of the data stored on the storage nodes and the integrity of the query results.Our experimental results also show that after introducing the MR-Trees in KNN queries on TMWSNs,the communication overhead has an effective reduction compared to BAFSKQ.展开更多
The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-...The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.展开更多
Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is...Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is no access point to control the nodes in the network. This makes the network to undergo severe attacks from both passive and active devices. Due to this attack, the network undergoes downgrade performance. To overcome these attacks, security based routing protocol is proposed with the security based wormhole detection scheme. This scheme comprises of two phases. In this approach, the detection of wormhole attacks is deployed for having correct balance between safe route and stability. Also, to ensure packets integrity cryptographic scheme is used as well as authenticity while travelling from source to destination nodes. By extensive simulation, the proposed scheme achieves enhanced performance of packet delivery ratio, end to end delay, throughput and overhead than the existing schemes.展开更多
The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS...The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS protocol uses broadcasting rather than pairwise communication to accomplish synchronization. In the CBS scheme, the initial offset of local clocks can be successfully eliminated by the operation of clapping nodes, which leads to significant improvement in synchronization accuracy. The CBS protocol was implemented on the TelosB platform and its performance was evaluated in a variety of experiments. The results demonstrate that the CBS protocol outperforms the current state-of-the-art approach, the Flooding Time Synchronization Protocol (FTSP), in both single-hop and multi-hop scenarios in terms of synchronous precision and energy consumption. In multi-hop scenarios, the CBS algorithm keeps about 50% of its synchronization errors within 1 ms. In comparison, the FTSP keeps less than 7% of its synchronization errors within this range. In both single-hop and multi-hop scenarios, the CBS protocol is over 3.2 times more energy-efficient than the FTSP.展开更多
Set reconciliation between two nodes is widely used in network applications. The basic idea is that each member of a node pair has an object set and seeks to deliver its unique objects to the other member. The Standar...Set reconciliation between two nodes is widely used in network applications. The basic idea is that each member of a node pair has an object set and seeks to deliver its unique objects to the other member. The Standard Bloom Filter (SBF) and its variants, such as the Invertible Bloom Filter (IBF), are effective approaches to solving the set reconciliation problem. The SBF-based method requires each node to represent its objects using an SBF, which is exchanged with the other node. A receiving node queries the received SBF against its local objects to identify the unique objects. Finally, each node exchanges its unique objects with the other node in the node pair. For the IBF- based method, each node represents its objects using an IBF, which is then exchanged. A receiving node subtracts the received IBF from its local IBF so as to decode the different objects between the two sets. Intuitively, it would seem that the IBF-based method, with only one round of communication, entails less communication overhead than the SBF-based method, which incurs two rounds of communication. Our research results, however, indicate that neither of these two methods has an absolute advantages over the others. In this paper, we aim to provide an in-depth understanding of the two methods, by evaluating and comparing their communication overhead. We find that the best method depends on parameter settings. We demonstrate that the SBF-based method outperforms the IBF-based method in most cases. But when the number of different objects in the two sets is below a certain threshold, the IBF-based method outperforms the SBF-based method.展开更多
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
文摘Active message is an efficient and versatile communication architecture. The high performance ofit is closely related to the choices made in implementing. This paper discusses the mechanism of active message and considerations should be taken in implementation. We propose improvements in method of message reception and buffer management. Programming model and method using active message arc also discussed.
基金This work is supported by the Aeronautical Science Foundation of China under Grant 20165515001the National Natural Science Foundation of China under Grant No.61402225State Key Laboratory for smart grid protection and operation control Foundation,and the Science and Technology Funds from National State Grid Ltd.(The Research on Key Technologies of Distributed Parallel Database Storage and Processing based on Big Data).
文摘Tiered Mobile Wireless Sensor Network(TMWSN)is a new paradigm introduced by mobile edge computing.Now it has received wide attention because of its high scalability,robustness,deployment flexibility,and it has a wide range of application scenarios.In TMWSNs,the storage nodes are the key nodes of the network and are more easily captured and utilized by attackers.Once the storage nodes are captured by the attackers,the data stored on them will be exposed.Moreover,the query process and results will not be trusted any more.This paper mainly studies the secure KNN query technology in TMWSNs,and we propose a secure KNN query algorithm named the Basic Algorithm For Secure KNN Query(BAFSKQ)first,which can protect privacy and verify the integrity of query results.However,this algorithm has a large communication overhead in most cases.In order to solve this problem,we propose an improved algorithm named the Secure KNN Query Algorithm Based on MR-Tree(SEKQAM).The MR-Trees are used to find the K-nearest locations and help to generate a verification set to process the verification of query results.It can be proved that our algorithms can effectively guarantee the privacy of the data stored on the storage nodes and the integrity of the query results.Our experimental results also show that after introducing the MR-Trees in KNN queries on TMWSNs,the communication overhead has an effective reduction compared to BAFSKQ.
基金supported by the National Natural Science Foundation of China(61071104)the National High Technology Research and Development Program(2008AA12Z305)
文摘The spectrum sharing problem between primary and cognitive users is mainly investigated. Since the interference for primary users and the total power for cognitive users are constrained, based on the well-known water-filling theorem, a novel one-user water-filling algorithm is proposed, and then the corresponding simulation results are given to analyze the feasibility and validity. After that this algorithm is used to solve the communication utility optimization problem subject to the power constraints in cognitive radio network. First, through the gain to noise ratio for cognitive users, a subcarrier and power allocation algorithm based on the optimal frequency partition is proposed for two cognitive users. Then the spectrum sharing algorithm is extended to multiuser conditions such that the greedy and parallel algorithms are proposed for spectrum sharing. Theory and simulation analysis show that the subcarrier and power allocation algorithms can not only protect the primary users but also effectively solve the spectrum and power allocation problem for cognitive users.
文摘Nowadays, the major part and most standard networks usually used in several applications are Wireless Sensor Networks (WSNs). It consists of different nodes which communicate each other for data transmission. There is no access point to control the nodes in the network. This makes the network to undergo severe attacks from both passive and active devices. Due to this attack, the network undergoes downgrade performance. To overcome these attacks, security based routing protocol is proposed with the security based wormhole detection scheme. This scheme comprises of two phases. In this approach, the detection of wormhole attacks is deployed for having correct balance between safe route and stability. Also, to ensure packets integrity cryptographic scheme is used as well as authenticity while travelling from source to destination nodes. By extensive simulation, the proposed scheme achieves enhanced performance of packet delivery ratio, end to end delay, throughput and overhead than the existing schemes.
基金Supported by the National Key Basic Research and Development Program (973) of China (No. 2010CB334707)the National Natural Science Foundation of China (Nos. 60803126 and 61003298)+1 种基金the Natural Science Foundation of Zhejiang Province (Nos. Z1080979 and Y1101336)the Program for Zhejiang Provincial Key Innovative Research Team on Sensor Networks
文摘The Clapping and Broadcasting Synchronization (CBS) algorithm, which is specifically designed for large-scale sensor networks with low communication overhead and high synchronization accuracy, is introduced. The CBS protocol uses broadcasting rather than pairwise communication to accomplish synchronization. In the CBS scheme, the initial offset of local clocks can be successfully eliminated by the operation of clapping nodes, which leads to significant improvement in synchronization accuracy. The CBS protocol was implemented on the TelosB platform and its performance was evaluated in a variety of experiments. The results demonstrate that the CBS protocol outperforms the current state-of-the-art approach, the Flooding Time Synchronization Protocol (FTSP), in both single-hop and multi-hop scenarios in terms of synchronous precision and energy consumption. In multi-hop scenarios, the CBS algorithm keeps about 50% of its synchronization errors within 1 ms. In comparison, the FTSP keeps less than 7% of its synchronization errors within this range. In both single-hop and multi-hop scenarios, the CBS protocol is over 3.2 times more energy-efficient than the FTSP.
基金supported in part by the National Natural Science Foundation of China(Nos.61422214 and 61402513)the National Key Basic Research and Development(973)Program of China(No.2014CB347800)+1 种基金the Program for New Century Excellent Talents in University and Distinguished Young Scholars of National University of Defense Technology(No.JQ14-05-02)the Preliminary Research Funding of National University of Defense Technology(No.ZDYYJCYJ20140601)
文摘Set reconciliation between two nodes is widely used in network applications. The basic idea is that each member of a node pair has an object set and seeks to deliver its unique objects to the other member. The Standard Bloom Filter (SBF) and its variants, such as the Invertible Bloom Filter (IBF), are effective approaches to solving the set reconciliation problem. The SBF-based method requires each node to represent its objects using an SBF, which is exchanged with the other node. A receiving node queries the received SBF against its local objects to identify the unique objects. Finally, each node exchanges its unique objects with the other node in the node pair. For the IBF- based method, each node represents its objects using an IBF, which is then exchanged. A receiving node subtracts the received IBF from its local IBF so as to decode the different objects between the two sets. Intuitively, it would seem that the IBF-based method, with only one round of communication, entails less communication overhead than the SBF-based method, which incurs two rounds of communication. Our research results, however, indicate that neither of these two methods has an absolute advantages over the others. In this paper, we aim to provide an in-depth understanding of the two methods, by evaluating and comparing their communication overhead. We find that the best method depends on parameter settings. We demonstrate that the SBF-based method outperforms the IBF-based method in most cases. But when the number of different objects in the two sets is below a certain threshold, the IBF-based method outperforms the SBF-based method.