Possibility of making Al-Pb alloy plate with Pb dispersed uniformly by LDC (Liquid Dynamic Compact) technology has been studied in the present paper. The relationship among the distance between nozzle and cooled base ...Possibility of making Al-Pb alloy plate with Pb dispersed uniformly by LDC (Liquid Dynamic Compact) technology has been studied in the present paper. The relationship among the distance between nozzle and cooled base plate and the atomization pressure as well as the density of the Al-Pb alloy slab is measured. The relative density of the LDC Al-Pb alloy slab can reach 90% under condition of the present experiment. Microstructure of the slab consist of equal axial grains with 15 approximately 25 μm in diameter and Pb dispersed uniformly in them. After cold or hot rolling of the slab with reduction of 50 approximately 60%, the microstructure can be densified. The rolled Al-Pb alloy plate can be compacted together with pure Al plate very well.展开更多
The paper studies the probability of industrial application of vibration liquefaction of bulk solid from the opposite point of view, and proposing turning its harmful effects into benefits. Utilizing a new device of v...The paper studies the probability of industrial application of vibration liquefaction of bulk solid from the opposite point of view, and proposing turning its harmful effects into benefits. Utilizing a new device of vibration liquefaction and by compacting saturated bulk solid, a set of additional device for experiment was designed. These experiments examined the problems related to vibration liquefaction of fine ores and tailings on the basis of DSA 1 type direct shear apparatus, including models of straight tubes, curved tubes and a sandbox. The changing properties of tailings under vibration and the mechanism of vibration liquefaction and compacting of tailings were studied, and future application of the technique to mines has been put forward.展开更多
In the present scenario,computational modeling has gained much importance for the prediction of the properties of concrete.This paper depicts that how computational intelligence can be applied for the prediction of co...In the present scenario,computational modeling has gained much importance for the prediction of the properties of concrete.This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete(SCC).Three models,namely,Extreme Learning Machine(ELM),Adaptive Neuro Fuzzy Inference System(ANFIS)and Multi Adaptive Regression Spline(MARS)have been employed in the present study for the prediction of compressive strength of self compacting concrete.The contents of cement(c),sand(s),coarse aggregate(a),fly ash(f),water/powder(w/p)ratio and superplasticizer(sp)dosage have been taken as inputs and 28 days compressive strength(fck)as output for ELM,ANFIS and MARS models.A relatively large set of data including 80 normalized data available in the literature has been taken for the study.A comparison is made between the results obtained from all the above-mentioned models and the model which provides best fit is established.The experimental results demonstrate that proposed models are robust for determination of compressive strength of self-compacting concrete.展开更多
This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium ...This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure.展开更多
Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned ...Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned with investigation of fresh and hardened properties of self-compacting concrete (SCC) produced from local available materials in JORDAN. The produced SCC contains the local stone cut waste powder which is called Al-KHAMKHA in JORDAN with different replacement of (0%, 10%, and 25%) of fine silica aggregate;?the study also investigatesthe effects of SP33 super?plasticizer which is used by different doses (1%, 1.5% and 2%) for cement. The slump flow and the compressive strength of SCC were studied and the experimental results indicate the possibility of using Al-KHAMKHA in the production of SCC as the results showed that the compressive strength of the SCC with 10 % replacement by al-khamkha together with 1% SP33?super plasticizer was higher compared to pure SCC without al-khamkha;?the results also showed that as al-khamkha content increased the slump flow decreased.展开更多
The technology of concrete has significantly increased in recent years through the use of super plasticizer and availability of mineral additions. One of the most recent materials used as an additive, replacing a port...The technology of concrete has significantly increased in recent years through the use of super plasticizer and availability of mineral additions. One of the most recent materials used as an additive, replacing a portion of cement in concrete, is fine clay fired at a temperature of 800℃ to 900℃. This research is based on trials that complied with artificial pozzolan (waste crushed brick), and their effect on the rheological and mechanical behavior of mortar. The addition of 5% of a waste crushed brick has helped not only to improve the strength (tensile and compression), but also to foster a better rheological behavior in terms of fluidity and stability, with a low heat of hydration compared to control. However, tests of optimizing the content of self-compacting concrete (SCC) in coarse aggregates, sand and binder, led us to confirm that the combined mass of more optimal (better workability and stability) is that based on low in volumetric percentage of sand/paste with a granular skeleton richest gravel low dimensions (2/3 of G 3/8 and 1/3 of G 8/15).展开更多
This paper presents the results of experimental investigations on mechanical properties of self compacting concrete made with local materials. The used materials were cement, aggregate and super plasticizer. Limestone...This paper presents the results of experimental investigations on mechanical properties of self compacting concrete made with local materials. The used materials were cement, aggregate and super plasticizer. Limestone powder, silica fume and blast furnace slag have been used as adjuvant in self compacting concrete (SCC). Self compacting concrete properties in fresh and hardened state are characterized and analyzed. The test results indicate the possibility to manufacture SCC with good rheological and mechanical properties using local materials.展开更多
This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetr...This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetration resistance. This innovative SSC, different from the traditional SSC, was purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag, low calcium Class F fly ash and circulating fluidized bed combustion (CFBC) fly ash and was denoted as SFC-SSC (super-sulfated cement made by mixture of slag, Class F fly ash and CFBC fly ash). Experimental results showed that the combination of a fixed amount of 15 wt.% of CFBC fly ash with various ratios of Class F fly ash to slag could be used to produce the hardened SCCs with high 28-day compressive strengths (41.8 - 65.6 MPa). Addition of Class F fly ash led to the resulting SCCs with lowered price and preferable engineering properties, and thus it was considered as state-of-the-art method to drive such type of concrete towards sustainable construction materials.展开更多
Wood and fly ash were observed to have significant qualities that could improve the strength of self compacting concrete.The material was applied to increase the compressive strength of concrete strength.This material...Wood and fly ash were observed to have significant qualities that could improve the strength of self compacting concrete.The material was applied to increase the compressive strength of concrete strength.This material could be the demanding material for partial replacement for cement.The study observed the behaviour of the material from experts that applied these material through experimental investigation,but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of these materials in compressive strength.This was to determine the significant effect on the addictive applied as partial replacement for cement.Lots of experts have done works on fly ash through experiment concept,but the application of predictive concept has not been carried out.The adoption of this concept has expressed other parameters that contributed to the efficiency of wood and fly ash as partial replacement for cement on self compacting concrete.The study adopting modeling and simulation observed 10 and 20%by weight of cement as it is reflected on its performance in the simulation,from the simulation wood recorded 10%as it was observed from the growth rate of this self compacting concrete reflected from the trend.The simulation for model validation was compared with the works of the studies carried out[20].And both values developed best fits correlation.展开更多
The engineering characteristics of weathered soft rock are important contents of soft rock mechanics. They also play a significant role in compacting deformation, which has been known to exert a significant amount of ...The engineering characteristics of weathered soft rock are important contents of soft rock mechanics. They also play a significant role in compacting deformation, which has been known to exert a significant amount of influence on the stability of highway filling subgrade engineering. In an effort to investigate this aspect of the problem, compacting tests and unconfined compressive strength tests have been carried out on weathered argillaceous slate and pelitic siltstone rocks, which are broken and graded before the test. The testing results indicate that the relationships of both between stress and strain and between axial strain and tangent modulus are exponential relationships; the size of the grain plays some influence on the deformation modulus, whereas the water content impacts the compressive strength greatly, which shows quadratic function; the unconfined compressive strength is linear with the dry density of loose soft rock mixtures. Therefore, the water content must be controlled in both the design and the construction of subgrade engineering of soft rock filling, and at the same time some effective measures should be taken to reach the requirement of compaction.展开更多
A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rota...A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rotary compactor is able to produce uniform slabs with the desired thickness of 65 mm all over around. Furthermore, 132 cored samples from the rotary compactor had been compacted uniformly with approximately 4% optimum air void content. In addition, performance tests results indicate that the rotary compactor produces asphalt mixturures with the requirements of resilient modulus, Marshall stability and flow. A weight factor was introduced for each fraction of aggregates in the degradation analysis to compensate the crushing effect of aggregates during mixing and compacting.展开更多
This paper represents experimental work on the mechanical and durability parameters of self-compacting concrete(SCC)with copper slag(CS)and fly ash(FA).In the first phase of the experiment,certain SCC mixes are prepar...This paper represents experimental work on the mechanical and durability parameters of self-compacting concrete(SCC)with copper slag(CS)and fly ash(FA).In the first phase of the experiment,certain SCC mixes are prepared with six percentages of FA replacing the cement ranging from 5%to 30%.In the second phase,copper slag replaces fine aggregate at an interval of 20%to 100%by taking the optimum percentage value of FA.The performance of SCC mixes containing FA and copper slag is measured with fresh properties,compressive,split tensile and flexural strengths.SCC durability metrics,such as resistance against chloride and voids in the concrete matrix,is measured with rapid chloride ion penetration test(RCPT)and sorptivity techniques.The microstructure of the SCC is analyzed by using SEM and various phases available in the concrete matrix identified with XRD analysis.It is found that when replacing cement with 20%of FA and replacing fine aggregate with 40%of copper slag in SCC,higher mechanical strengths will be delivered.Resistance of chloride and voids in the concrete matrix reaches the optimum value at 40%;and with the increase of dosage,the quality of SCC will be improved.Therefore,it is recommended that copper slag be used as a sustainable material for replacement of fine aggregate.展开更多
The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve ...The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.展开更多
Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the ar...Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.展开更多
Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(...Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.展开更多
The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact pro...Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.展开更多
文摘Possibility of making Al-Pb alloy plate with Pb dispersed uniformly by LDC (Liquid Dynamic Compact) technology has been studied in the present paper. The relationship among the distance between nozzle and cooled base plate and the atomization pressure as well as the density of the Al-Pb alloy slab is measured. The relative density of the LDC Al-Pb alloy slab can reach 90% under condition of the present experiment. Microstructure of the slab consist of equal axial grains with 15 approximately 25 μm in diameter and Pb dispersed uniformly in them. After cold or hot rolling of the slab with reduction of 50 approximately 60%, the microstructure can be densified. The rolled Al-Pb alloy plate can be compacted together with pure Al plate very well.
文摘The paper studies the probability of industrial application of vibration liquefaction of bulk solid from the opposite point of view, and proposing turning its harmful effects into benefits. Utilizing a new device of vibration liquefaction and by compacting saturated bulk solid, a set of additional device for experiment was designed. These experiments examined the problems related to vibration liquefaction of fine ores and tailings on the basis of DSA 1 type direct shear apparatus, including models of straight tubes, curved tubes and a sandbox. The changing properties of tailings under vibration and the mechanism of vibration liquefaction and compacting of tailings were studied, and future application of the technique to mines has been put forward.
文摘In the present scenario,computational modeling has gained much importance for the prediction of the properties of concrete.This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete(SCC).Three models,namely,Extreme Learning Machine(ELM),Adaptive Neuro Fuzzy Inference System(ANFIS)and Multi Adaptive Regression Spline(MARS)have been employed in the present study for the prediction of compressive strength of self compacting concrete.The contents of cement(c),sand(s),coarse aggregate(a),fly ash(f),water/powder(w/p)ratio and superplasticizer(sp)dosage have been taken as inputs and 28 days compressive strength(fck)as output for ELM,ANFIS and MARS models.A relatively large set of data including 80 normalized data available in the literature has been taken for the study.A comparison is made between the results obtained from all the above-mentioned models and the model which provides best fit is established.The experimental results demonstrate that proposed models are robust for determination of compressive strength of self-compacting concrete.
文摘This study examined the relationship between selected physico-mechanical properties, compacting pressure and mixing proportion of briquettes produced from combination of maize cob particles and sawdust of low, medium and high density timber species. Particle sizes of maize cobs and sawdust used for the study were ≤1 mm. The two materials were combined at mixing percentages of 90:10, 70:30 and 50:50 (Sawdust:maize cobs). Briquettes were produced at room temperature (28°C) using compacting pressures 20, 30, 40 and 50 MPa. The results suggested that combining maize cob particles with sawdust of low, medium and high density wood species could significantly enhance the relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from agricultural biomass residue like maize cobs. The results further indicated that the physical and mechanical characteristics of briquettes produced from combinations of sawdust of low density species and maize cobs were exceptionally higher than that produced from combinations of maize cob particles, and medium density and high density timber species. The R2 values for the regression model between the independent variables (mixing percentage and compacting pressure) and relaxed density, compressive strength in cleft and impact resistance index of briquettes produced from combinations of maize cob particles and sawdust of low density species (Ceiba pentandra) were 0.966, 0.932 and 0.710 respectively. This study provides a hope for briquetting maize cobs at room temperature using a low compacting pressure.
文摘Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned with investigation of fresh and hardened properties of self-compacting concrete (SCC) produced from local available materials in JORDAN. The produced SCC contains the local stone cut waste powder which is called Al-KHAMKHA in JORDAN with different replacement of (0%, 10%, and 25%) of fine silica aggregate;?the study also investigatesthe effects of SP33 super?plasticizer which is used by different doses (1%, 1.5% and 2%) for cement. The slump flow and the compressive strength of SCC were studied and the experimental results indicate the possibility of using Al-KHAMKHA in the production of SCC as the results showed that the compressive strength of the SCC with 10 % replacement by al-khamkha together with 1% SP33?super plasticizer was higher compared to pure SCC without al-khamkha;?the results also showed that as al-khamkha content increased the slump flow decreased.
文摘The technology of concrete has significantly increased in recent years through the use of super plasticizer and availability of mineral additions. One of the most recent materials used as an additive, replacing a portion of cement in concrete, is fine clay fired at a temperature of 800℃ to 900℃. This research is based on trials that complied with artificial pozzolan (waste crushed brick), and their effect on the rheological and mechanical behavior of mortar. The addition of 5% of a waste crushed brick has helped not only to improve the strength (tensile and compression), but also to foster a better rheological behavior in terms of fluidity and stability, with a low heat of hydration compared to control. However, tests of optimizing the content of self-compacting concrete (SCC) in coarse aggregates, sand and binder, led us to confirm that the combined mass of more optimal (better workability and stability) is that based on low in volumetric percentage of sand/paste with a granular skeleton richest gravel low dimensions (2/3 of G 3/8 and 1/3 of G 8/15).
文摘This paper presents the results of experimental investigations on mechanical properties of self compacting concrete made with local materials. The used materials were cement, aggregate and super plasticizer. Limestone powder, silica fume and blast furnace slag have been used as adjuvant in self compacting concrete (SCC). Self compacting concrete properties in fresh and hardened state are characterized and analyzed. The test results indicate the possibility to manufacture SCC with good rheological and mechanical properties using local materials.
文摘This study proposed a new way to formulate a low energy super-sulfated cement (SSC) which can be used to produce self-compacting concrete (SCC) with high compressive strength and durability in terms of chloride penetration resistance. This innovative SSC, different from the traditional SSC, was purely produced with a ternary mixture of three industrial by-products of ground granulated blast furnace slag, low calcium Class F fly ash and circulating fluidized bed combustion (CFBC) fly ash and was denoted as SFC-SSC (super-sulfated cement made by mixture of slag, Class F fly ash and CFBC fly ash). Experimental results showed that the combination of a fixed amount of 15 wt.% of CFBC fly ash with various ratios of Class F fly ash to slag could be used to produce the hardened SCCs with high 28-day compressive strengths (41.8 - 65.6 MPa). Addition of Class F fly ash led to the resulting SCCs with lowered price and preferable engineering properties, and thus it was considered as state-of-the-art method to drive such type of concrete towards sustainable construction materials.
文摘Wood and fly ash were observed to have significant qualities that could improve the strength of self compacting concrete.The material was applied to increase the compressive strength of concrete strength.This material could be the demanding material for partial replacement for cement.The study observed the behaviour of the material from experts that applied these material through experimental investigation,but the study monitored the behaviour of this material by applied modeling and simulation to determine other effect that could influence the behaviour of these materials in compressive strength.This was to determine the significant effect on the addictive applied as partial replacement for cement.Lots of experts have done works on fly ash through experiment concept,but the application of predictive concept has not been carried out.The adoption of this concept has expressed other parameters that contributed to the efficiency of wood and fly ash as partial replacement for cement on self compacting concrete.The study adopting modeling and simulation observed 10 and 20%by weight of cement as it is reflected on its performance in the simulation,from the simulation wood recorded 10%as it was observed from the growth rate of this self compacting concrete reflected from the trend.The simulation for model validation was compared with the works of the studies carried out[20].And both values developed best fits correlation.
基金Key Science and Technology Planning Project by Science & Technology Department of Hubei Province (No. 2004AA101C92).
文摘The engineering characteristics of weathered soft rock are important contents of soft rock mechanics. They also play a significant role in compacting deformation, which has been known to exert a significant amount of influence on the stability of highway filling subgrade engineering. In an effort to investigate this aspect of the problem, compacting tests and unconfined compressive strength tests have been carried out on weathered argillaceous slate and pelitic siltstone rocks, which are broken and graded before the test. The testing results indicate that the relationships of both between stress and strain and between axial strain and tangent modulus are exponential relationships; the size of the grain plays some influence on the deformation modulus, whereas the water content impacts the compressive strength greatly, which shows quadratic function; the unconfined compressive strength is linear with the dry density of loose soft rock mixtures. Therefore, the water content must be controlled in both the design and the construction of subgrade engineering of soft rock filling, and at the same time some effective measures should be taken to reach the requirement of compaction.
基金the Ministry of Higher Education for funding this research
文摘A new automatic rotary compactor and its abilities in compacting stone mastic asphalt (SMA) are presented. Following an overview of the rotary compactor and the compaction procedure, it is demonstrated that the rotary compactor is able to produce uniform slabs with the desired thickness of 65 mm all over around. Furthermore, 132 cored samples from the rotary compactor had been compacted uniformly with approximately 4% optimum air void content. In addition, performance tests results indicate that the rotary compactor produces asphalt mixturures with the requirements of resilient modulus, Marshall stability and flow. A weight factor was introduced for each fraction of aggregates in the degradation analysis to compensate the crushing effect of aggregates during mixing and compacting.
文摘This paper represents experimental work on the mechanical and durability parameters of self-compacting concrete(SCC)with copper slag(CS)and fly ash(FA).In the first phase of the experiment,certain SCC mixes are prepared with six percentages of FA replacing the cement ranging from 5%to 30%.In the second phase,copper slag replaces fine aggregate at an interval of 20%to 100%by taking the optimum percentage value of FA.The performance of SCC mixes containing FA and copper slag is measured with fresh properties,compressive,split tensile and flexural strengths.SCC durability metrics,such as resistance against chloride and voids in the concrete matrix,is measured with rapid chloride ion penetration test(RCPT)and sorptivity techniques.The microstructure of the SCC is analyzed by using SEM and various phases available in the concrete matrix identified with XRD analysis.It is found that when replacing cement with 20%of FA and replacing fine aggregate with 40%of copper slag in SCC,higher mechanical strengths will be delivered.Resistance of chloride and voids in the concrete matrix reaches the optimum value at 40%;and with the increase of dosage,the quality of SCC will be improved.Therefore,it is recommended that copper slag be used as a sustainable material for replacement of fine aggregate.
基金supported by the National Natural Science Foundation of China(Grant No.12035002).
文摘The achievement of ignition at the National Ignition Facility(NIF)has prompted a global wave of further research on inertial fusion energy(IFE).However,IFE requires a target gain G of 30-100,and it is hard to achieve fusion at such high gain with the energy,configuration,and technical approach of the NIF.Here,we present a conceptual design for a next-generation laser driver that is applicable to multiple laser fusion schemes and provides 10 MJ,2-3 PW at 3ω(or 2ω,in which case the energy and power can be higher),and one shot per 30 min,with the aim of achieving G>30.It is also efficient,compact,and low in cost,and it has low susceptibility to laser-plasma instabilities.
基金supported by National Natural Science Foundation of China(Grant Nos.4203070 and 41977217)the Key Research&Development Program of Shaanxi Province(Grant No.2020ZDLSF06-03).
文摘Mountain excavation and city construction(MECC)projects being launched in the Loess Plateau in China involve the creation of large-scale artificial land.Understanding the subsurface evolution characteristics of the artificial land is essential,yet challenging.Here,we use an improved fiber-optic monitoring system for its subsurface multi-physical characterization.The system enables us to gather spatiotemporal distribution of various parameters,including strata deformation,temperature,and moisture.Yan’an New District was selected as a case study to conduct refined in-situ monitoring through a 77 m-deep borehole and a 30 m-long trench.Findings reveal that the ground settlement involves both the deformation of the filling loess and the underlying intact loess.Notably,the filling loess exhibits a stronger creep capability compared to underlying intact loess.The deformation along the profile is unevenly distributed,with a positive correlation with soil moisture.Water accumulation has been observed at the interface between the filling loess and the underlying intact loess,leading to a significant deformation.Moreover,the temperature and moisture in the filling loess have reached a new equilibrium state,with their depths influenced by atmospheric conditions measuring at 31 m and 26 m,respectively.The refined investigation allows us to identify critical layers that matter the sustainable development of newly created urban areas,and provide improved insights into the evolution mechanisms of land creation.
基金the support from the Key Program Grant from National Natural Science Foundation of China (52039005)Grant from State Key Laboratory of Hydroscience and Engineering (2022-KY-01).
文摘Over the past few decades,one of the most significant advances in dam construction has been the inven-tion of the rock-filled concrete(RFC)dam,which is constructed by pouring high-performance self-compacting concrete(HSCC)to fill the voids in preplaced large rocks.The innovative use of large rocks in dam construction provides engineers with a material that requires less cement consumption and hydration heat while enhancing construction efficiency and environmental friendliness.However,two fundamental scientific issues related to RFC need to be addressed:namely,the pouring compactness and the effect of large rocks on the mechanical and physical properties of RFC.This article provides a timely review of fundamental research and innovations in the design,construction,and quality control of RFCdams.Prospects for next-generation concrete dams are discussed from the perspectives of envi-ronmental friendliness,intrinsic safety,and labor savings.
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
基金This work was supported by National Natural Science Foundation of China(No.12222513).
文摘Radio frequency quadrupoles(RFQs),which are crucial components of proton injectors,significantly affect the performance of proton accelerator facilities.An RFQ with a high frequency of 714 MHz dedicated to compact proton injectors for medi-cal applications is designed in this study.The RFQ is designed to accelerate proton beams from 50 keV to 4 MeV within a short length of 2 m and can be matched closely with the downstream drift tube linac to capture more particles through a preliminary optimization.To develop an advanced RFQ,challenging techniques,including fabrication and tuning method,must be evaluated and verified using a prototype.An aluminium prototype is derived from the conceptual design of the RFQ and then redesigned to confirm the radio frequency performance,fabrication procedure,and feasibility of the tuning algorithm.Eventually,a new tuning algorithm based on the response matrix and least-squares method is developed,which yields favorable results based on the prototype,i.e.,the errors of the dipole and quadrupole components reduced to a low level after several tuning iterations.Benefiting from the conceptual design and techniques obtained from the prototype,the formal mechanical design of the 2-m RFQ is ready for the next manufacturing step.