期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Possibility of Inducing Compressive Residual Stresses in Welded Joints of SS400 Steels 被引量:1
1
作者 Quanhong LIN, Jing CHEN and Huaining CHEN Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期661-663,共3页
Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue dis- ruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-we... Since the welded constructions produce easily stress corrosion cracking (SCC) or fatigue dis- ruption in corrosive medium or under ripple load, two methods inducing compressive stress on structural surfaces by anti-welding-heating treatment (AWHT) and explosion treatment (ET) are presented. The results show that they are good ways to resisting SCC on the welded 55400 steel or other components. 展开更多
关键词 In Possibility of Inducing compressive residual stresses in Welded Joints of SS400 Steels SS
下载PDF
An Overview of Techniques for Measuring Residual Stress in Metal Matrix Composites
2
作者 Qingping Wang Pakeeza Maryum Yuxin Liu 《Journal of Materials Science and Chemical Engineering》 CAS 2022年第10期59-77,共19页
Measurement of residual stress is signi&#64257;cant to ensure safety, reliability and the life of composites, and currently has been a hot issue in scienti&#64257;c research. The fabrication processes such as ... Measurement of residual stress is signi&#64257;cant to ensure safety, reliability and the life of composites, and currently has been a hot issue in scienti&#64257;c research. The fabrication processes such as machining, and heat treatment inherit either kind of residual stress which had either positive consequences or negative ones, for example, the fatigue limit of a component enhances by compressive stress, whereas corrosion resistance gets reduced by tensile stress. This study is aimed at a brief overview of the recent advancement in this field to help researchers in the in-depth study of measuring residual stress. It helps them in selecting the most appropriate techniques among destructive methods i.e., mainly Contour, ring core, deep hole-drilling method, and non-destructive techniques i.e., diffraction, ultrasonic method, depending on their requirements and applications. For each available technique, working methodology, physical limitations, and applications are discussed. At the end of this paper, future trends regarding an assessment of residual stress have been forecasted. 展开更多
关键词 residual stress Destructive Methods compressive residual stress Tensile residual stress Non-Destructive Methods
下载PDF
Dynamics along the epithelial-cancer biointerface:Hidden system complexities
3
作者 IVANA PAJIC-LIJAKOVIC MILAN MILIVOJEVIC 《BIOCELL》 SCIE 2023年第11期2321-2334,共14页
The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies(like epithelial cancer).The altered rearrangement of epithelial cells has an... The biointerface dynamics influence any cancer spreading through the epithelium since it is documented in the early stages some malignancies(like epithelial cancer).The altered rearrangement of epithelial cells has an impact on the development of cancer.Therefore,it is necessary to comprehend the underlying biological and physical mechanisms of this biointerface dynamics for early suppression of cancer.While the biological mechanisms include cell signaling and gene expression,the physical mechanisms are several physical parameters such as the epithelial-cancer interfacial tension,epithelial surface tension,and compressive stress accumulated within the epithelium.Although the segregation of epithelia-cancer co-cultured systems was widely investigated,the role of these physical parameters in cell reorganization is still not fully recognized.Hence,this review is focused on clarifying the role that some physical parameters have during cell reorganization within the epithelial cell clusters and cancer spread within co-cultured spheroids.We have applied the developed biophysical model to point out the inter-relations among physical parameters that influence cell reorganization within epithelial-cancer co-cultured systems.The main results of this theoretical consideration have been assessed by integrating the biophysical model with biological and bio-mechanical experiments from the available literature.The epithelial-cancer interfacial tension leads to the reduction of the biointerface area,which leads to an increase in the compressive residual stress within the epithelial clusters depending on the viscoelasticity of the epithelial subpopulation.This stress impacts epithelial rearrangement and the dynamics along the biointerface by influencing the epithelial surface tension and epithelial-cancer interfacial tension.Further,the interrelation between the epithelial surface tension and epithelial-cancer interfacial tension influences the spread of cancer cells. 展开更多
关键词 Collective cell migration Cell compressive residual stress Viscoelasticity Epithelial surface tension Epithelial-cancer interfacial tension Supracellular actin network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部