期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
An improvement to computational efficiency of the drain current model for double-gate MOSFET
1
作者 周幸叶 张健 +5 位作者 周致赜 张立宁 马晨月 吴文 赵巍 张兴 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期392-395,共4页
As a connection between the process and the circuit design, the device model is greatly desired for emerging devices, such as the double-gate MOSFET. Time efficiency is one of the most important requirements for devic... As a connection between the process and the circuit design, the device model is greatly desired for emerging devices, such as the double-gate MOSFET. Time efficiency is one of the most important requirements for device modeling. In this paper, an improvement to the computational efficiency of the drain current model for double-gate MOSFETs is extended, and different calculation methods are compared and discussed. The results show that the calculation speed of the improved model is substantially enhanced. A two-dimensional device simulation is performed to verify the improved model. Furthermore, the model is implemented into the HSPICE circuit simulator in Verilog-A for practical application. 展开更多
关键词 computational efficiency compact model DOUBLE-GATE MOSFET
原文传递
Secure Computation Efficiency Resource Allocation for Massive MIMO-Enabled Mobile Edge Computing Networks
2
作者 Sun Gangcan Sun Jiwei +3 位作者 HaoWanming Zhu Zhengyu Ji Xiang Zhou Yiqing 《China Communications》 SCIE CSCD 2024年第11期150-162,共13页
In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based ... In this article,the secure computation efficiency(SCE)problem is studied in a massive multipleinput multiple-output(mMIMO)-assisted mobile edge computing(MEC)network.We first derive the secure transmission rate based on the mMIMO under imperfect channel state information.Based on this,the SCE maximization problem is formulated by jointly optimizing the local computation frequency,the offloading time,the downloading time,the users and the base station transmit power.Due to its difficulty to directly solve the formulated problem,we first transform the fractional objective function into the subtractive form one via the dinkelbach method.Next,the original problem is transformed into a convex one by applying the successive convex approximation technique,and an iteration algorithm is proposed to obtain the solutions.Finally,the stimulations are conducted to show that the performance of the proposed schemes is superior to that of the other schemes. 展开更多
关键词 EAVESDROPPING massive multiple input multiple output mobile edge computing partial offloading secure computation efficiency
下载PDF
Multi-resolution nonlinear topology optimization with enhanced computational efficiency and convergence 被引量:5
3
作者 Zijie Chen Guilin Wen +2 位作者 Hongxin Wang Liang Xue Jie Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第2期93-109,I0003,共18页
Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed bas... Huge calculation burden and difficulty in convergence are the two central conundrums of nonlinear topology optimization(NTO).To this end,a multi-resolution nonlinear topology optimization(MR-NTO)method is proposed based on the multiresolution design strategy(MRDS)and the additive hyperelasticity technique(AHT),taking into account the geometric nonlinearity and material nonlinearity.The MR-NTO strategy is established in the framework of the solid isotropic material with penalization(SIMP)method,while the Neo-Hookean hyperelastic material model characterizes the material nonlinearity.The coarse analysis grid is employed for finite element(FE)calculation,and the fine material grid is applied to describe the material configuration.To alleviate the convergence problem and reduce sensitivity calculation complexity,the software ANSYS coupled with AHT is utilized to perform the nonlinear FE calculation.A strategy for redistributing strain energy is proposed during the sensitivity analysis,i.e.,transforming the strain energy of the analysis element into that of the material element,including Neo-Hooken and second-order Yeoh material.Numerical examples highlight three distinct advantages of the proposed method,i.e.,it can(1)significantly improve the computational efficiency,(2)make up for the shortcoming that NTO based on AHT may have difficulty in convergence when solving the NTO problem,especially for 3D problems,(3)successfully cope with high-resolution 3D complex NTO problems on a personal computer. 展开更多
关键词 Nonlinear topology optimization Multi-resolution design Additive hyperelasticity technique computational efficiency CONVERGENCE
原文传递
Parallel Inference for Real-Time Machine Learning Applications
4
作者 Sultan Al Bayyat Ammar Alomran +3 位作者 Mohsen Alshatti Ahmed Almousa Rayyan Almousa Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期139-146,共8页
Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes... Hyperparameter tuning is a key step in developing high-performing machine learning models, but searching large hyperparameter spaces requires extensive computation using standard sequential methods. This work analyzes the performance gains from parallel versus sequential hyperparameter optimization. Using scikit-learn’s Randomized SearchCV, this project tuned a Random Forest classifier for fake news detection via randomized grid search. Setting n_jobs to -1 enabled full parallelization across CPU cores. Results show the parallel implementation achieved over 5× faster CPU times and 3× faster total run times compared to sequential tuning. However, test accuracy slightly dropped from 99.26% sequentially to 99.15% with parallelism, indicating a trade-off between evaluation efficiency and model performance. Still, the significant computational gains allow more extensive hyperparameter exploration within reasonable timeframes, outweighing the small accuracy decrease. Further analysis could better quantify this trade-off across different models, tuning techniques, tasks, and hardware. 展开更多
关键词 Machine Learning Models computational efficiency Parallel Computing Systems Random Forest Inference Hyperparameter Tuning Python Frameworks (TensorFlow PyTorch Scikit-Learn) High-Performance Computing
下载PDF
Efficiency analysis of numerical integrations for finite element substructure in real-time hybrid simulation 被引量:5
5
作者 Wang Jinting Lu Liqiao Zhu Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第1期73-86,共14页
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy... Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay. 展开更多
关键词 real-time hybrid simulation computational efficiency numerical integration storage optimization time delay
下载PDF
Fast solution to the free return orbit's reachable domain of the manned lunar mission by deep neural network
6
作者 YANG Luyi LI Haiyang +1 位作者 ZHANG Jin ZHU Yuehe 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期495-508,共14页
It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly eval... It is important to calculate the reachable domain(RD)of the manned lunar mission to evaluate whether a lunar landing site could be reached by the spacecraft. In this paper, the RD of free return orbits is quickly evaluated and calculated via the classification and regression neural networks. An efficient databasegeneration method is developed for obtaining eight types of free return orbits and then the RD is defined by the orbit’s inclination and right ascension of ascending node(RAAN) at the perilune. A classify neural network and a regression network are trained respectively. The former is built for classifying the type of the RD, and the latter is built for calculating the inclination and RAAN of the RD. The simulation results show that two neural networks are well trained. The classification model has an accuracy of more than 99% and the mean square error of the regression model is less than 0.01°on the test set. Moreover, a serial strategy is proposed to combine the two surrogate models and a recognition tool is built to evaluate whether a lunar site could be reached. The proposed deep learning method shows the superiority in computation efficiency compared with the traditional double two-body model. 展开更多
关键词 manned lunar mission free return orbit reachable domain(RD) deep neural network computation efficiency
下载PDF
A novel virtual machine deployment algorithm with energy efficiency in cloud computing 被引量:12
7
作者 周舟 胡志刚 +1 位作者 宋铁 于俊洋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期974-983,共10页
In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the... In order to improve the energy efficiency of large-scale data centers, a virtual machine(VM) deployment algorithm called three-threshold energy saving algorithm(TESA), which is based on the linear relation between the energy consumption and(processor) resource utilization, is proposed. In TESA, according to load, hosts in data centers are divided into four classes, that is,host with light load, host with proper load, host with middle load and host with heavy load. By defining TESA, VMs on lightly loaded host or VMs on heavily loaded host are migrated to another host with proper load; VMs on properly loaded host or VMs on middling loaded host are kept constant. Then, based on the TESA, five kinds of VM selection policies(minimization of migrations policy based on TESA(MIMT), maximization of migrations policy based on TESA(MAMT), highest potential growth policy based on TESA(HPGT), lowest potential growth policy based on TESA(LPGT) and random choice policy based on TESA(RCT)) are presented, and MIMT is chosen as the representative policy through experimental comparison. Finally, five research directions are put forward on future energy management. The results of simulation indicate that, as compared with single threshold(ST) algorithm and minimization of migrations(MM) algorithm, MIMT significantly improves the energy efficiency in data centers. 展开更多
关键词 cloud computing energy efficiency three-threshold virtual machine(VM) selection policy energy management
下载PDF
Computational fluid dynamics(CFD) simulation of effect of baffles on separation in mixer settler 被引量:13
8
作者 Mohsen Ostad Shabani Ali Mazahery +4 位作者 Mehdi Alizadeh Ali Asghar Tofigh Mohammad Reza Rahimipour Mansour Razavi Alireza Kolahi 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期703-706,共4页
The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baf... The main ideas in the development of the solvent extraction mixer settler focused on achieving clean phase separation,minimizing the loss of the reagents and decreasing the surface area of the settlers.The role of baffles in a mechanically agitated vessel is to ensure even distribution,reduce settler turbulence,promote the stability of power drawn by the impeller and to prevent swirling and vortexing of liquid,thus,greatly improving the mixing of liquid.The insertion of the appropriate number of baffles clearly improves the extent of liquid mixing.However,excessive baffling would interrupt liquid mixing and lengthen the mixing time.Computational fluid dynamics(CFD) provides a tool for determining detailed information on fluid flow(hydrodynamics) which is necessary for modeling subprocesses in mixer settler.A total of 54 final CFD runs were carried out representing different combinations of variables like number of baffles,density and impeller speed.CFD data shows that amount of separation increases with increasing baffles number and decreasing impeller speed. 展开更多
关键词 Mixer settler computational fluid dynamics Liquid-liquid efficiency
下载PDF
Bubble size modeling approach for the simulation of bubble columns 被引量:2
9
作者 Xibao Zhang Zhenghong Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期194-200,共7页
The constant bubble size modeling approach(CBSM)and variable bubble size modeling approach(VBSM)are frequently employed in Eulerian–Eulerian simulation of bubble columns.However,the accuracy of CBSM is limited while ... The constant bubble size modeling approach(CBSM)and variable bubble size modeling approach(VBSM)are frequently employed in Eulerian–Eulerian simulation of bubble columns.However,the accuracy of CBSM is limited while the computational efficiency of VBSM needs to be improved.This work aims to develop method for bubble size modeling which has high computational efficiency and accuracy in the simulation of bubble columns.The distribution of bubble sizes is represented by a series of discrete points,and the percentage of bubbles with various sizes at gas inlet is determined by the results of computational fluid dynamics(CFD)–population balance model(PBM)simulations,whereas the influence of bubble coalescence and breakup is neglected.The simulated results of a 0.15 m diameter bubble column suggest that the developed method has high computational speed and can achieve similar accuracy as CFD–PBM modeling.Furthermore,the convergence issues caused by solving population balance equations are addressed. 展开更多
关键词 Bubble column Bubble size modeling Numerical simulation Population balance equations computational efficiency
下载PDF
Multivariate adaptive regression splines and neural network models for prediction of pile drivability 被引量:39
10
作者 Wengang Zhang Anthony T.C.Goh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期45-52,共8页
Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and... Piles are long, slender structural elements used to transfer the loads from the superstructure through weak strata onto stiffer soils or rocks. For driven piles, the impact of the piling hammer induces compression and tension stresses in the piles. Hence, an important design consideration is to check that the strength of the pile is sufficient to resist the stresses caused by the impact of the pile hammer. Due to its complexity, pile drivability lacks a precise analytical solution with regard to the phenomena involved.In situations where measured data or numerical hypothetical results are available, neural networks stand out in mapping the nonlinear interactions and relationships between the system’s predictors and dependent responses. In addition, unlike most computational tools, no mathematical relationship assumption between the dependent and independent variables has to be made. Nevertheless, neural networks have been criticized for their long trial-and-error training process since the optimal configuration is not known a priori. This paper investigates the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines(MARS), as an alternative to neural networks, to approximate the relationship between the inputs and dependent response, and to mathematically interpret the relationship between the various parameters. In this paper, the Back propagation neural network(BPNN) and MARS models are developed for assessing pile drivability in relation to the prediction of the Maximum compressive stresses(MCS), Maximum tensile stresses(MTS), and Blow per foot(BPF). A database of more than four thousand piles is utilized for model development and comparative performance between BPNN and MARS predictions. 展开更多
关键词 Back propagation neural network Multivariate adaptive regression splines Pile drivability computational efficiency NONLINEARITY
下载PDF
Application of Improved Hybrid Interface Substructural Component Modal Synthesis Method in Vibration Characteristics of Mistuned Blisk 被引量:5
11
作者 BAI Bin BAI Guangchen LI Chao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第6期1219-1231,共13页
The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The class... The large and complex structures are divided into hundreds of thousands or millions degrees of freedom(DOF) when they are calculated which will spend a lot of time and the efficiency will be extremely low. The classical component modal synthesis method (CMSM) are used extensively, but for many structures in the engineering of high-rise buildings, aerospace systemic engineerings, marine oil platforms etc, a large amount of calculation is still needed. An improved hybrid interface substructural component modal synthesis method(HISCMSM) is proposed. The parametric model of the mistuned blisk is built by the improved HISCMSM. The double coordinating conditions of the displacement and the force are introduced to ensure the computational accuracy. Compared with the overall structure finite element model method(FEMM), the computational time is shortened by23.86%–31.56%and the modal deviation is 0.002%–0.157% which meets the requirement of the computational accuracy. It is faster 4.46%–10.57% than the classical HISCMSM. So the improved HISCMSM is better than the classical HISCMSM and the overall structure FEMM. Meanwhile, the frequency and the modal shape are researched, considering the factors including rotational speed, gas temperature and geometry size. The strong localization phenomenon of the modal shape’s the maximum displacement and the maximum stress is observed in the second frequency band and it is the most sensitive in the frequency veering. But the localization phenomenon is relatively weak in 1st and the 3d frequency band. The localization of the modal shape is more serious under the condition of the geometric dimensioning mistuned. An improved HISCMSM is proposed, the computational efficiency of the mistuned blisk can be increased observably by this method. 展开更多
关键词 modal shape mistuned blisk vibration characteristics computational efficiency computational accuracy
下载PDF
Efficient Mass Transport and Electrochemistry Coupling Scheme for Reliable Multiphysics Modeling of Planar Solid Oxide Fuel Cell Stack
12
作者 李昂 林子敬 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第2期139-146,I0001,共9页
A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the h... A multiphysics model for a production scale planar solid oxide fuel cell (SOFC) stack is important for the SOFC technology, but usually requires an unpractical amount of computing resource. The major cause for the huge computing resource requirement is identified as the need to solve the cathode O2 transport and the associated electrochemistry. To overcome the technical obstacle, an analytical model for solving the O2 transport and its coupling with the electrochemistry is derived. The analytical model is used to greatly reduce the numerical mesh complexity of a multiphysics model. Numerical test shows that the analytical approximation is highly accurate and stable. A multiphysics numerical modeling tool taking advantage of the analytical solution is then developed through Fluent@. The numerical efficiency and stability of this modeling tool are further demonstrated by simulating a 30- cell stack with a production scale cell size. Detailed information about the stack performance is revealed and briefly discussed. The multiphysics modeling tool can be used to guide the stack design and select the operating parameters. 展开更多
关键词 Simulation Mesh setting Analytical model computational efficiency Numerical stability
下载PDF
A PREDICTION TECHNIQUE FOR DYNAMIC ANALYSIS OF FLAT PLATES IN MID-FREQUENCY RANGE 被引量:5
13
作者 Weicai Peng Zeng He Peng Li Jiaqiang Wang 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期333-341,共9页
The wave-based method (WBM) has been applied for the prediction of mid-frequency vibrations of fiat plates. The scaling factors, Gauss point selection rule and truncation rule are introduced to insure the wave model... The wave-based method (WBM) has been applied for the prediction of mid-frequency vibrations of fiat plates. The scaling factors, Gauss point selection rule and truncation rule are introduced to insure the wave model to converge. Numerical results show that the prediction tech- nique based on WBM is with higher accuracy and smaller computational effort than the one on FEM, which implies that this new technique on WBM can be applied to higher-frequency range. 展开更多
关键词 mid-frequency range Trefftz method computational efficiency numerical prediction technique
下载PDF
Robust entry guidance using multi-segment linear pseudospectral model predictive control 被引量:3
14
作者 Liang Yang Wanchun Chen +1 位作者 Xiaoming Liu Hao Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第1期103-125,共23页
This paper presents a robust entry guidance algorithm for the high lift-to-drag ratio entry vehicle that employs the recently developed pseudospectral model predict control in a segmented manner. Here, the guidance co... This paper presents a robust entry guidance algorithm for the high lift-to-drag ratio entry vehicle that employs the recently developed pseudospectral model predict control in a segmented manner. Here, the guidance commands are the longitudinal lift-to-drag (L/D) and bank reversal commands, which are calculated by successively solving multiple segment linear algebraic equations. These equations are derived using the linear pseudospectral method, control parametrization and calculus of variations. The method uses orthogonal polynomials and computes the updates through a series of analytical formulae, which makes it accurate and computationally effective. Moreover, it is able to adjust the number of bank reversals by providing the precise bank reversal point so as to fully exploit the potential of lateral maneuver. The method also employs proportional navigation and polynomial guidance after the last bank reversal to meet multiple terminal constraints. High-fidelity numerical simulations with various destinations are carried out to demonstrate its applicability. Furthermore, Monte Carlo simulations are also conducted to show that the proposed algorithm consistently offers very stable and robust performances and has superior performances in computational efficiency, guidance accuracy and lateral trajectory shaping capability in comparison with other typical methods. © 1990-2011 Beijing Institute of Aerospace Information. 展开更多
关键词 CALCULATIONS computational efficiency Drag Electronic guidance systems Intelligent systems Lift drag ratio Linear algebra Linear equations Monte Carlo methods
下载PDF
A new spatial coherence model and analytical coeffi cients for multi-support response spectrum combination 被引量:3
15
作者 王君杰 陈虎 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2007年第3期225-235,共11页
In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are develo... In this paper, a new spatial coherence model of seismic ground motions is proposed by a fitting procedure. The analytical expressions of modal combination (correlation) coefficients of structural response are developed for multi-support seismic excitations. The coefficients from both the numerical integration and analytical solutions are compared to verify the accuracy of the solutions. It is shown that the analytical expressions of numerical modal combination coefficients are of high accuracy. The results of random responses of an example bridge show that the analytical modal combination coefficients developed in this paper are accurate enough to meet the requirements needed in practice. In addition, the computational efficiency of the analytical solutions of the modal combination coefficients is demonstrated by the response computation of the example bridge. It is found that the time required for the structural response analysis by using the analytical modal combination coefficients is less than 1/20 of that using numerical integral methods. 展开更多
关键词 multi-support seismic excitations spatial coherence model modal combination coefficients computational efficiency power spectrum density
下载PDF
A High-Accuracy Single Patch Representation of Multi-Patch Geometries with Applications to Isogeometric Analysis 被引量:2
16
作者 Jinlan Xu Ningning Sun Gang Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第8期627-642,共16页
This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,mult... This paper presents a novel approximating method to construct highprecision single-patch representation of B-spline surface from a multi-patch representation for isogeometric applications.In isogeometric analysis,multi-patch structure is not easy to achieve high continuity between neighboring patches which will reduce the advantage of isogeometric analysis in a sense.The proposed method can achieve high continuity at surface stitching region with low geometric error,and this technique exploits constructing the approximate surface with several control points are from original surfaces,which guarantees the local feature of the surface can be well-preserved with high precision.With the proposed approximating method,isogeometric analysis results using the new single-patch can be obtained efficiently compared with the original multi-patch structure.Several examples are presented to illustrate the effectiveness,accuracy and efficiency of the proposed method. 展开更多
关键词 Isogeometric analysis patch merging multi-patch structure computational efficiency
下载PDF
A meshfree-based local Galerkin method with condensation of degree of freedom for elastic dynamic analysis 被引量:1
17
作者 De-An Hu Yi-Gang Wang +2 位作者 Yang-Yang Li Xu Han Yuan-Tong Gu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期92-99,共8页
Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes w... Condensation technique of degree of freedom is first proposed to improve the computational efficiency of meshfree method with Galerkin weak form for elastic dy- namic analysis. In the present method, scattered nodes with- out connectivity are divided into several subsets by cells with arbitrary shape. Local discrete equation is established over each cell by using moving Kriging interpolation, in which the nodes that located in the cell are used for approxima- tion. Then local discrete equations can be simplified by con- densation of degree of freedom, which transfers equations of inner nodes to equations of boundary nodes based on cells. The global dynamic system equations are obtained by as- sembling all local discrete equations and are solved by using the standard implicit Newmark's time integration scheme. In the scheme of present method, the calculation of each cell is carried out by meshfree method, and local search is imple- mented in interpolation. Numerical examples show that the present method has high computational efficiency and good accuracy in solving elastic dynamic problems. 展开更多
关键词 Meshfree method Local Galerkin method Moving Kriging interpolation - Condensation of degree of freedom computational efficiency
下载PDF
Computer Methodologies for the Comparison of Some Efficient Derivative FreeSimultaneous Iterative Methods for Finding Roots of Non-Linear Equations 被引量:1
18
作者 Yuming Chu Naila Rafiq +3 位作者 Mudassir Shams Saima Akram Nazir Ahmad Mir Humaira Kalsoom 《Computers, Materials & Continua》 SCIE EI 2021年第1期275-290,共16页
In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Conver... In this article,we construct the most powerful family of simultaneous iterative method with global convergence behavior among all the existing methods in literature for finding all roots of non-linear equations.Convergence analysis proved that the order of convergence of the family of derivative free simultaneous iterative method is nine.Our main aim is to check out the most regularly used simultaneous iterative methods for finding all roots of non-linear equations by studying their dynamical planes,numerical experiments and CPU time-methodology.Dynamical planes of iterative methods are drawn by using MATLAB for the comparison of global convergence properties of simultaneous iterative methods.Convergence behavior of the higher order simultaneous iterative methods are also illustrated by residual graph obtained from some numerical test examples.Numerical test examples,dynamical behavior and computational efficiency are provided to present the performance and dominant efficiency of the newly constructed derivative free family of simultaneous iterative method over existing higher order simultaneous methods in literature. 展开更多
关键词 Non-linear equation iterative method simultaneous method basins of attractions computational efficiency
下载PDF
Probabilistic Robust Linear Parameter-varying Control of a Small Helicopter Using Iterative Scenario Approach
19
作者 Zhou Fang Hua Tian Ping Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期85-93,共9页
In this paper, we present an iterative scenario approach (ISA) to design robust controllers for complex linear parameter-varying (LPV) systems with uncertainties. The robust controller synthesis problem is transformed... In this paper, we present an iterative scenario approach (ISA) to design robust controllers for complex linear parameter-varying (LPV) systems with uncertainties. The robust controller synthesis problem is transformed to a scenario design problem, with the scenarios generated by identically extracting random samples on both uncertainty parameters and scheduling parameters. An iterative scheme based on the maximum volume ellipsoid cutting-plane method is used to solve the problem. Heuristic logic based on relevance ratio ranking is used to prune the redundant constraints, and thus, to improve the numerical stability of the algorithm. And further, a batching technique is presented to remarkably enhance the computational efficiency. The proposed method is applied to design an output-feedback controller for a small helicopter. Multiple uncertain physical parameters are considered, and simulation studies show that the closed-loop performance is quite good in both aspects of model tracking and dynamic decoupling. For robust LPV control problems, the proposed method is more computationally efficient than the popular stochastic ellipsoid methods. © 2014 Chinese Association of Automation. 展开更多
关键词 Aircraft control Algorithms Computation theory computational efficiency Controllers Design Helicopters Optimization Problem solving Robust control Scheduling Stochastic systems Uncertainty analysis
下载PDF
Properties of High-Order Finite Difference Schemes and Idealized Numerical Testing
20
作者 Daosheng XU Dehui CHEN Kaixin WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第4期615-626,共12页
Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, th... Construction of high-order difference schemes based on Taylor series expansion has long been a hot topic in computational mathematics, while its application in comprehensive weather models is still very rare. Here, the properties of high-order finite difference schemes are studied based on idealized numerical testing, for the purpose of their application in the Global/Regional Assimilation and Prediction System(GRAPES) model. It is found that the pros and cons due to grid staggering choices diminish with higher-order schemes based on linearized analysis of the one-dimensional gravity wave equation. The improvement of higher-order difference schemes is still obvious for the mesh with smooth varied grid distance. The results of discontinuous square wave testing also exhibits the superiority of high-order schemes. For a model grid with severe non-uniformity and non-orthogonality, the advantage of high-order difference schemes is inapparent, as shown by the results of two-dimensional idealized advection tests under a terrain-following coordinate. In addition, the increase in computational expense caused by high-order schemes can be avoided by the precondition technique used in the GRAPES model. In general, a high-order finite difference scheme is a preferable choice for the tropical regional GRAPES model with a quasi-uniform and quasi-orthogonal grid mesh. 展开更多
关键词 high-order difference scheme DISPERSION UNIFORM ORTHOGONAL computational efficiency
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部