期刊文献+
共找到294篇文章
< 1 2 15 >
每页显示 20 50 100
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
1
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
下载PDF
Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty
2
作者 Qingrong Zeng Xiaochen Liu +2 位作者 Xuefeng Zhu Xiangkui Zhang Ping Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2065-2085,共21页
Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challe... Traditional topology optimization methods often suffer from the“dimension curse”problem,wherein the com-putation time increases exponentially with the degrees of freedom in the background grid.Overcoming this challenge,we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty(CGAN-GP).This innovative method allows for nearly instantaneous prediction of optimized structures.Given a specific boundary condition,the network can produce a unique optimized structure in a one-to-one manner.The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization(SIMP)method.Subsequently,we design a conditional generative adversarial network and train it to generate optimized structures.To further enhance the quality of the optimized structures produced by CGAN-GP,we incorporate Pix2pixGAN.This augmentation results in sharper topologies,yielding structures with enhanced clarity,de-blurring,and edge smoothing.Our proposed method yields a significant reduction in computational time when compared to traditional topology optimization algorithms,all while maintaining an impressive accuracy rate of up to 85%,as demonstrated through numerical examples. 展开更多
关键词 Real-time topology optimization conditional generative adversarial networks dimension curse CMES 2024 vol.141 no.3
下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
3
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
下载PDF
CGAN-EB: A non-parametric empirical Bayes method for crash frequency modeling using conditional generative adversarial networks as safety performance functions
4
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2023年第3期753-764,共12页
The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-param... The empirical Bayes(EB)method based on parametric statistical models such as the negative binomial(NB)has been widely used for ranking sites in the road network safety screening process.In this paper a novel non-parametric EB method for modeling crash frequency data based on Conditional Generative Adversarial Networks(CGAN)is proposed and evaluated over a real-world crash data set.Unlike parametric approaches,there is no need for a pre-specified underlying relationship between dependent and independent variables in the proposed CGAN-EB and they are able to model any types of distributions.The proposed methodology is applied to real-world and simulated crash data sets.The performance of CGAN-EB in terms of model fit,predictive performance and network screening outcomes is compared with the conventional approach(NB-EB)as a benchmark.The results indicate that the proposed CGAN-EB approach outperforms NB-EB in terms of prediction power and hotspot identification tests. 展开更多
关键词 Crash predictive model conditional generative adversarial networks(CGAN) Crash data simulation Empirical Bayes method Safety performance function
下载PDF
Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks 被引量:21
5
作者 Tuan-Feng Zhang Peter Tilke +3 位作者 Emilien Dupont Ling-Chen Zhu Lin Liang William Bailey 《Petroleum Science》 SCIE CAS CSCD 2019年第3期541-549,共9页
This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the fle... This paper proposes a novel approach for generating 3-dimensional complex geological facies models based on deep generative models.It can reproduce a wide range of conceptual geological models while possessing the flexibility necessary to honor constraints such as well data.Compared with existing geostatistics-based modeling methods,our approach produces realistic subsurface facies architecture in 3D using a state-of-the-art deep learning method called generative adversarial networks(GANs).GANs couple a generator with a discriminator,and each uses a deep convolutional neural network.The networks are trained in an adversarial manner until the generator can create "fake" images that the discriminator cannot distinguish from "real" images.We extend the original GAN approach to 3D geological modeling at the reservoir scale.The GANs are trained using a library of 3D facies models.Once the GANs have been trained,they can generate a variety of geologically realistic facies models constrained by well data interpretations.This geomodelling approach using GANs has been tested on models of both complex fluvial depositional systems and carbonate reservoirs that exhibit progradational and aggradational trends.The results demonstrate that this deep learning-driven modeling approach can capture more realistic facies architectures and associations than existing geostatistical modeling methods,which often fail to reproduce heterogeneous nonstationary sedimentary facies with apparent depositional trend. 展开更多
关键词 GEOLOGICAL FACIES Geomodeling Data conditioning generative adversarial networkS
下载PDF
Deep convolutional generative adversarial networks for traffic data imputation encoding time series as images
6
作者 Tongge Huang Pranamesh Chakraborty Anuj Sharma 《International Journal of Transportation Science and Technology》 2023年第1期1-18,共18页
Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and oth... Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (>50%), which shows the robustness and efficiency of the proposed model. 展开更多
关键词 Traffic data imputation generative adversarial networks Realistic data generation Time-dependent encoding Deep convolutional neural networks
下载PDF
QAR Data Imputation Using Generative Adversarial Network with Self-Attention Mechanism
7
作者 Jingqi Zhao Chuitian Rong +1 位作者 Xin Dang Huabo Sun 《Big Data Mining and Analytics》 EI CSCD 2024年第1期12-28,共17页
Quick Access Recorder(QAR),an important device for storing data from various flight parameters,contains a large amount of valuable data and comprehensively records the real state of the airline flight.However,the reco... Quick Access Recorder(QAR),an important device for storing data from various flight parameters,contains a large amount of valuable data and comprehensively records the real state of the airline flight.However,the recorded data have certain missing values due to factors,such as weather and equipment anomalies.These missing values seriously affect the analysis of QAR data by aeronautical engineers,such as airline flight scenario reproduction and airline flight safety status assessment.Therefore,imputing missing values in the QAR data,which can further guarantee the flight safety of airlines,is crucial.QAR data also have multivariate,multiprocess,and temporal features.Therefore,we innovatively propose the imputation models A-AEGAN("A"denotes attention mechanism,"AE"denotes autoencoder,and"GAN"denotes generative adversarial network)and SA-AEGAN("SA"denotes self-attentive mechanism)for missing values of QAR data,which can be effectively applied to QAR data.Specifically,we apply an innovative generative adversarial network to impute missing values from QAR data.The improved gated recurrent unit is then introduced as the neural unit of GAN,which can successfully capture the temporal relationships in QAR data.In addition,we modify the basic structure of GAN by using an autoencoder as the generator and a recurrent neural network as the discriminator.The missing values in the QAR data are imputed by using the adversarial relationship between generator and discriminator.We introduce an attention mechanism in the autoencoder to further improve the capability of the proposed model to capture the features of QAR data.Attention mechanisms can maintain the correlation among QAR data and improve the capability of the model to impute missing data.Furthermore,we improve the proposed model by integrating a self-attention mechanism to further capture the relationship between different parameters within the QAR data.Experimental results on real datasets demonstrate that the model can reasonably impute the missing values in QAR data with excellent results. 展开更多
关键词 multivariate time series data imputation self-attention generative adversarial network(GAN)
原文传递
Traffic volume imputation using the attention-based spatiotemporal generative adversarial imputation network
8
作者 Yixin Duan Chengcheng Wang +2 位作者 Chao Wang Jinjun Tang Qun Chen 《Transportation Safety and Environment》 2024年第4期54-67,共14页
With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing an... With the increasing development of intelligent detection devices,a vast amount of traffic flow data can be collected from intelligent transportation systems.However,these data often encounter issues such as missing and abnormal values,which can adversely affect the accuracy of future tasks like traffic flow forecasting.To address this problem,this paper proposes the Attention-based Spatiotemporal Generative Adversarial Imputation Network(ASTGAIN)model,comprising a generator and a discriminator,to conduct traffic volume imputation.The generator incorporates an information fuse module,a spatial attention mechanism,a causal inference module and a temporal attention mechanism,enabling it to capture historical information and extract spatiotemporal relationships from the traffic flow data.The discriminator features a bidirectional gated recurrent unit,which explores the temporal correlation of the imputed data to distinguish between imputed and original values.Additionally,we have devised an imputation filling technique that fully leverages the imputed data to enhance the imputation performance.Comparison experiments with several traditional imputation models demonstrate the superior performance of the ASTGAIN model across diverse missing scenarios. 展开更多
关键词 missing data imputation generative adversarial network spatiotemporal traffic flow data attention mechanism
下载PDF
Application of Conditional Deep Generative Networks (CGAN) in empirical bayes estimation of road crash risk and identifying crash hotspots
9
作者 Mohammad Zarei Bruce Hellinga Pedram Izadpanah 《International Journal of Transportation Science and Technology》 2024年第1期258-269,共12页
The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road ... The conditional generative adversarial network(CGAN)is used in this paper for empirical Bayes(EB)analysis of road crash hotspots.EB is a well-known method for estimating the expected crash frequency of sites(e.g.road segments,intersections)and then prioritising these sites to identify a subset of high priority sites(e.g.hotspots)for additional safety audits/improvements.In contrast to the conventional EB approach,which employs a statis tical model such as the negative binomial model(NB-EB)to model crash frequency data,the recently developed CGAN-EB approach uses a conditional generative adversarial net work,a form of deep neural network,that can model any form of distributions of the crash frequency data.Previous research has shown that the CGAN-EB performs as well as or bet ter than NB-EB,however that work considered only a small range of crash data character istics and did not examine the spatial and temporal transferability.In this paper a series of simulation experiments are devised and carried out to assess the CGAN-EB performance across a wide range of conditions and compares it to the NB-EB.The simulation results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model(i.e.data conform to the assumptions of the NB model)and outperforms NB-EB in experi ments reflecting conditions frequently encountered in practice(i.e.low sample mean crash rates,and when crash frequency does not follow a log-linear relationship with covariates).Also,temporal and spatial transferability of both approaches were evaluated using field data and both CGAN-EB and NB-EB approaches were found to have similar performance. 展开更多
关键词 conditional generative adversarial networks(CGAN) Hotspot identification Empirical Bayes method Safety performance function Negative binomial model network screening Crash data simulation
下载PDF
High-speed multimode fiber imaging system based on conditional generative adversarial network 被引量:5
10
作者 Zhenming Yu Zhenyu Ju +3 位作者 Xinlei Zhang Ziyi Meng Feifei Yin Kun Xu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第8期1-5,共5页
The multimode fiber(MMF)has great potential to transmit high-resolution images with less invasive methods in endoscopy due to its large number of spatial modes and small core diameter.However,spatial modes crosstalk w... The multimode fiber(MMF)has great potential to transmit high-resolution images with less invasive methods in endoscopy due to its large number of spatial modes and small core diameter.However,spatial modes crosstalk will inevitably occur in MMFs,which makes the received images become speckles.A conditional generative adversarial network(GAN)composed of a generator and a discriminator was utilized to reconstruct the received speckles.We conduct an MMF imaging experimental system of transmitting over 1 m MMF with a 50μm core.Compared with the conventional method of U-net,this conditional GAN could reconstruct images with fewer training datasets to achieve the same performance and shows higher feature extraction capability. 展开更多
关键词 fiber optics imaging imaging systems deep learning conditional generative adversarial network
原文传递
Adversarial Training-Aided Time-Varying Channel Prediction for TDD/FDD Systems 被引量:3
11
作者 Zhen Zhang Yuxiang Zhang +1 位作者 Jianhua Zhang Feifei Gao 《China Communications》 SCIE CSCD 2023年第6期100-115,共16页
In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utiliz... In this paper, a time-varying channel prediction method based on conditional generative adversarial network(CPcGAN) is proposed for time division duplexing/frequency division duplexing(TDD/FDD) systems. CPc GAN utilizes a discriminator to calculate the divergence between the predicted downlink channel state information(CSI) and the real sample distributions under a conditional constraint that is previous uplink CSI. The generator of CPcGAN learns the function relationship between the conditional constraint and the predicted downlink CSI and reduces the divergence between predicted CSI and real CSI.The capability of CPcGAN fitting data distribution can capture the time-varying and multipath characteristics of the channel well. Considering the propagation characteristics of real channel, we further develop a channel prediction error indicator to determine whether the generator reaches the best state. Simulations show that the CPcGAN can obtain higher prediction accuracy and lower system bit error rate than the existing methods under the same user speeds. 展开更多
关键词 channel prediction time-varying channel conditional generative adversarial network multipath channel deep learning
下载PDF
基于改进GAN的人机交互手势行为识别方法
12
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
下载PDF
基于条件生成对抗网络与迁移学习的暂态电压稳定超前判别
13
作者 王渝红 何其多 +5 位作者 郑宗生 周旭 马欢 程定一 赵康 周辰予 《电力自动化设备》 北大核心 2025年第2期159-166,共8页
为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决... 为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决样本不平衡问题,从而提升暂态电压稳定判别准确性;考虑到CGAN生成器与暂态电压时序预测模型具有相似的学习任务,将CGAN生成器模型迁移至暂态电压时序预测模型,结合工程判据实现暂态电压稳定超前判别,并进一步提升暂态电压稳定判别准确性。在CEPRI-VC暂态电压稳定分析系统中验证了所提方法的有效性。 展开更多
关键词 暂态电压稳定 稳定超前判别 迁移学习 条件生成对抗网络 数据生成
下载PDF
Phase prediction for high-entropy alloys using generative adversarial network and active learning based on small datasets 被引量:1
14
作者 CHEN Cun ZHOU HengRu +2 位作者 LONG WeiMin WANG Gang REN JingLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第12期3615-3627,共13页
In this paper,a new machine learning(ML)model combining conditional generative adversarial networks(CGANs)and active learning(AL)is proposed to predict the body-centered cubic(BCC)phase,face-centered cubic(FCC)phase,a... In this paper,a new machine learning(ML)model combining conditional generative adversarial networks(CGANs)and active learning(AL)is proposed to predict the body-centered cubic(BCC)phase,face-centered cubic(FCC)phase,and BCC+FCC phase of high-entropy alloys(HEAs).Considering the lack of data,CGANs are introduced for data augmentation,and AL can achieve high prediction accuracy under a small sample size owing to its special sample selection strategy.Therefore,we propose an ML framework combining CGAN and AL to predict the phase of HEAs.The arithmetic optimization algorithm(AOA)is introduced to improve the artificial neural network(ANN).AOA can overcome the problem of falling into the locally optimal solution for the ANN and reduce the number of training iterations.The AOA-optimized ANN model trained by the AL sample selection strategy achieved high prediction accuracy on the test set.To improve the performance and interpretability of the model,domain knowledge is incorporated into the feature selection.Additionally,considering that the proposed method can alleviate the problem caused by the shortage of experimental data,it can be applied to predictions based on small datasets in other fields. 展开更多
关键词 high-entropy alloys phase prediction machine learning conditional generative adversarial networks active learning
原文传递
改进生成对抗网络与残差网络的流量异常检测模型
15
作者 陈虹 杨思文 +2 位作者 金海波 武聪 由雨竹 《计算机技术与发展》 2025年第4期65-72,共8页
针对网络流量异常检测中因数据类别不平衡导致检测率不高、尤其少数类检测率偏低的问题,提出了一种结合改进生成对抗网络和残差网络的流量异常检测模型。首先,采用孤立森林算法对正常类样本进行异常值处理,以减少正常类样本与少数攻击... 针对网络流量异常检测中因数据类别不平衡导致检测率不高、尤其少数类检测率偏低的问题,提出了一种结合改进生成对抗网络和残差网络的流量异常检测模型。首先,采用孤立森林算法对正常类样本进行异常值处理,以减少正常类样本与少数攻击类样本的边界重叠,避免在过采样过程中由于不同类型样本边界相似性而引入新的离群点。其次,利用条件Wasserstein生成对抗网络在保持数据分布一致性的前提下生成新的少数攻击类样本,解决数据失衡问题的同时提高样本多样性。最后,设计了分裂残差融合卷积自编码器-双向门控循环单元的流量异常检测方法,通过分裂残差结构提取多尺度空间特征,结合双向门控循环单元捕捉前后时序信息,并引入锐度感知最小化算法,结合随机梯度下降优化器,进一步提升少数类的检测率。实验结果表明,在NSL-KDD数据集上,该模型的准确率和F1分数分别达到了89.69%和89.71%。与主流方法相比,对U2R和R2L攻击流量的检出率分别提高了至少8.94%和3.39%,并在CICIDS2017场景数据集上进一步验证了该方法的有效性和可行性。 展开更多
关键词 流量异常检测 条件Wasserstein生成对抗网络 自编码器 孤立森林 锐度感知最小化
下载PDF
基于可解释性条件生成对抗网络的台风气象负荷场景生成方法 被引量:1
16
作者 罗萍萍 盛奥 +3 位作者 林济铿 马骞 许琴 刘一鸣 《电力系统自动化》 北大核心 2025年第2期186-197,共12页
台风气象下电网负荷将会出现剧烈波动且威胁到电网安全稳定运行,亟需一种有效的方法来生成相应的负荷需求场景。文中提出一种面向稀少历史样本、基于可解释性条件生成对抗网络(CGAN)的台风负荷场景生成方法。首先,对历史台风负荷进行修... 台风气象下电网负荷将会出现剧烈波动且威胁到电网安全稳定运行,亟需一种有效的方法来生成相应的负荷需求场景。文中提出一种面向稀少历史样本、基于可解释性条件生成对抗网络(CGAN)的台风负荷场景生成方法。首先,对历史台风负荷进行修正,并根据台风登陆位置、等级等信息对其进行标签分类。然后,提出一种两阶段数据扩充策略以应对数据匮乏问题,第1阶段利用历史台风日负荷序列之间的横纵向相关性信息进行样本扩充,第2阶段利用台风日与非台风日负荷之间的残差信息进一步进行样本扩充。最后,提出基于特征影响指标的CGAN因果解释方法,刻画了不同特征对于模型结果的调控力度大小。算例证实了文中所提模型及方法的有效性和先进性。 展开更多
关键词 台风气象 人工智能 负荷需求 场景生成 可解释性 条件生成对抗网络
下载PDF
基于LSTM-CGAN的风电场景生成方法 被引量:1
17
作者 刘鹏飞 李瑶 李捍东 《软件工程》 2025年第2期16-20,共5页
针对传统风电场景生成方法未充分利用风电功率的预测误差,以及未合理考虑风电序列时间相关性的问题,提出了一种基于LSTM-CGAN(Long Short-Term Memory Conditional Generative Adversarial Network)的风电场景生成方法。该方法在条件生... 针对传统风电场景生成方法未充分利用风电功率的预测误差,以及未合理考虑风电序列时间相关性的问题,提出了一种基于LSTM-CGAN(Long Short-Term Memory Conditional Generative Adversarial Network)的风电场景生成方法。该方法在条件生成对抗网络模型的训练过程中引入了符合风电预测误差分布的随机噪声,同时使用深度长短期记忆网络搭建条件生成对抗网络的生成器和判别器。算例结果表明,所提方法生成的场景集对风电真实场景的覆盖率能够保持在98%以上,刻画风电的不确定性也不会过于保守,能够更好地学习到风电序列的时间相关性。 展开更多
关键词 风电 误差拟合 长短期记忆网络 条件生成对抗网络
下载PDF
弹底压力残缺信号的时频特征融合填充方法
18
作者 胡晋刚 原玥 +3 位作者 赵永壮 王宇 孙传猛 武耀艳 《测试技术学报》 2025年第2期180-189,共10页
针对火炮测试中因极端环境导致的弹底压力信号残缺问题,提出基于长短时记忆网络(LSTM)与生成对抗插补网络(GAIN)的时频特征融合填充方法以提高信号填充的准确性。运用GAIN网络的对抗训练原理,深入学习信号内部的复杂规律和潜在分布特征... 针对火炮测试中因极端环境导致的弹底压力信号残缺问题,提出基于长短时记忆网络(LSTM)与生成对抗插补网络(GAIN)的时频特征融合填充方法以提高信号填充的准确性。运用GAIN网络的对抗训练原理,深入学习信号内部的复杂规律和潜在分布特征,确保填充过程中保持信号全局结构与局部特征的一致性;采用时频特征融合策略,通过串并行双分支结构提取并融合弹底压力信号的时域与频域特征,从而全面捕捉信号的关键特征信息;引入具有时序处理能力的LSTM网络,学习并捕捉信号中的时序模式和长期依赖关系,确保填充信号在时序上的完整性和连贯性。试验结果表明:重构后的信号与完整信号高度相似,15 dB和30 dB信噪比情况下拟合优度达到0.9736和0.9968,实现了对弹底压力信号的精准填充。 展开更多
关键词 弹底压力 残缺信号填充 时频特征融合 长短时记忆网络 生成对抗插补网络
下载PDF
基于深度学习的水利工控网络流量异常检测方法
19
作者 马剑波 左翔 +2 位作者 丛小飞 叶瑞禄 刘威风 《水利水电技术(中英文)》 北大核心 2025年第4期167-178,共12页
【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集... 【目的】针对水利工控网络流量数据集不平衡、特征维数多和检测效率低等问题,提出一种结合改进条件生成对抗网络(ICGAN)、深度残差收缩网络(DRSN)、长短期记忆网络(LSTM)的流量异常检测方法。【方法】利用ICGAN构建了网络流量平衡数据集,利用DRSN-LSTM混合深度学习模型对网络异常流量数据进行检测,其中DRSN负责提取数据的空间特征,其残差连接可以解决网络退化与过拟合问题,压缩和激励网络可自动为每个特征图分配权重系数以提高检测效果,LSTM负责提取数据的时间特征。【结果】以秦淮河武定门闸站为应用场景对该方法进行测试,结果表明采用ICGAN优化后的数据集训练的各类检测模型,其流量分类精度高于原始数据集。DRSN-LSTM的网络流量异常检测的总体准确率达到了98.76%,其中正常数据分类的P、R和F1值,分别达到了99.22%、99.69%和99.46%,在评价指标上优于比较模型。【结论】融合ICGAN、DRSN和LSTM算法优势的水利工控网络流量异常检测方法,能够有效改善原始数据集中的类别不平衡性问题,提高对异常工控网络流量的检测能力,保障水利工程安全稳定运行。 展开更多
关键词 水利工控 网络流量异常检测 深度学习 条件生成对抗网络 深度残差收缩网络 长短期记忆网络 评价指标
下载PDF
基于改进CGAN网络的图像去雾算法
20
作者 程园园 程晓荣 《计算机与数字工程》 2025年第3期845-850,876,共7页
为了解决雾天图像与视频的质量大幅度下降的问题,提出了基于改进条件生成对抗网络(CGAN)的图像去雾方法。在传统的生成器中设计添加残差网络模块以及密集空洞空间金字塔池化(DenseASPP)模块来实现多尺度特征的提取,提高特征利用率,增强... 为了解决雾天图像与视频的质量大幅度下降的问题,提出了基于改进条件生成对抗网络(CGAN)的图像去雾方法。在传统的生成器中设计添加残差网络模块以及密集空洞空间金字塔池化(DenseASPP)模块来实现多尺度特征的提取,提高特征利用率,增强生成图像的去雾细节保持。判别器使用34×34的PatchGAN进行分块判定,提高图像判别准确度。在合成有雾数据集RESIDE中,通过与暗通道算法、DehazeNet、AOD-Net、传统CGAN算法进行对比,主观上可以看出该网络模型的雾残留少,细节信息的保持和色彩对比度都有所提高。通过峰值信噪比(PSNR)和结构相似度(SSIM)结果对比,客观表明该网络模型恢复无雾图像的效果得到了提升。 展开更多
关键词 单幅图像去雾 条件生成对抗网络 残差网络 DenseASPP PatchGAN
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部